--- library_name: peft license: mit base_model: NousResearch/Nous-Hermes-llama-2-7b tags: - axolotl - generated_from_trainer model-index: - name: 18eac61e-1856-417a-89be-c9dc382b3c57 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Nous-Hermes-llama-2-7b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - dce1f45ccc949531_train_data.json ds_type: json format: custom path: /workspace/input_data/dce1f45ccc949531_train_data.json type: field_input: Tweet field_instruction: text_0 field_output: Stance format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: true fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: false hub_model_id: dimasik87/18eac61e-1856-417a-89be-c9dc382b3c57 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 70GiB max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/dce1f45ccc949531_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 5 save_strategy: steps sequence_len: 2028 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 18eac61e-1856-417a-89be-c9dc382b3c57 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 18eac61e-1856-417a-89be-c9dc382b3c57 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# 18eac61e-1856-417a-89be-c9dc382b3c57 This model is a fine-tuned version of [NousResearch/Nous-Hermes-llama-2-7b](https://huggingface.co/NousResearch/Nous-Hermes-llama-2-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1907 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.4657 | 0.0039 | 1 | 4.7589 | | 4.6799 | 0.0118 | 3 | 4.3907 | | 2.134 | 0.0237 | 6 | 1.3221 | | 0.3771 | 0.0355 | 9 | 0.2607 | | 0.3309 | 0.0473 | 12 | 0.2177 | | 0.2078 | 0.0592 | 15 | 0.1968 | | 0.0943 | 0.0710 | 18 | 0.2118 | | 0.2146 | 0.0828 | 21 | 0.1886 | | 0.2725 | 0.0947 | 24 | 0.1907 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1