dineshresearch
commited on
Commit
•
aba10a8
1
Parent(s):
75bf976
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 205.45 +/- 69.00
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7f50878ee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7f50878f70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7f5087e040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7f5087e0d0>", "_build": "<function ActorCriticPolicy._build at 0x7f7f5087e160>", "forward": "<function ActorCriticPolicy.forward at 0x7f7f5087e1f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7f5087e280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7f5087e310>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7f5087e3a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7f5087e430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7f5087e4c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7f5087e550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7f508768a0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1001472, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678103973477132546, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALP4az0p4Fq6FkMnOqfFfLZ+N0a6bbtBuQAAgD8AAIA/ZvaBvcPhNbpEKj468rkUtlghXjuCBmG5AACAPwAAgD/NJKq8jxJzuuaTxDrrRJE1xpjuusoe5rkAAIA/AACAP2Ze6rvP/y28lCa8vMf7cD0181u7g1DouwAAgD8AAIA/mhY+vsXzhzwbezw7cPyUuYl2F75+FHW6AACAPwAAgD/aYNE94WBlPuJZ271lBTq+Ks8CvIuDWr0AAAAAAAAAAObEBD76zpo+a1sSvrRsL77k2RS9OUFAvAAAAAAAAAAAmhkOOntYhLqGBw43z3AhMvIhETs8YSa2AACAPwAAgD+AwHi9j7ZiuvWz7TrAiEK1D1GMu9TjCLoAAIA/AACAP7P81z3e/kI//oqEPUYvG746v749Stp8PQAAAAAAAAAAwFeCvfYIVbpB2A66NdZ3tr8fKLvAZuQ1AACAPwAAgD8zfMo+YYlsPyLcID6uVju+EMsePhcsjLwAAAAAAAAAAJpSMD0p1Gm6c+dhN7M1L7H0ATS78o2AtgAAgD8AAIA/Vg6Jvj8EpD7hYA4+rsNSvgEsE7v9oE88AAAAAAAAAABzeoi9FDaYujbcfTmCbh00/8b6uo8XkrgAAIA/AACAPwA7rz0p8Au6NoYWuzo1HTf66Iu69eqOtgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0014719999999999178, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIu5unOmR4a0CUhpRSlIwBbJRNrAGMAXSUR0CUOR0JF9a2dX2UKGgGaAloD0MIG6A01CgIXkCUhpRSlGgVTegDaBZHQJRAx5E+gUV1fZQoaAZoCWgPQwhlHY6u0v9vQJSGlFKUaBVN4QFoFkdAlESF/6O5rnV9lChoBmgJaA9DCKryPSNRxXBAlIaUUpRoFU1aAmgWR0CURcE0SAYpdX2UKGgGaAloD0MIscHCSRrHYUCUhpRSlGgVTegDaBZHQJRF9ZdOZb91fZQoaAZoCWgPQwiD29rC8yxDwJSGlFKUaBVNnwFoFkdAlEgty925hHV9lChoBmgJaA9DCH9pUZ/k52tAlIaUUpRoFU39AWgWR0CUS7MdcSoPdX2UKGgGaAloD0MIv0aSIFwjakCUhpRSlGgVTf4BaBZHQJRPBENOM2p1fZQoaAZoCWgPQwieJ56zBaBsQJSGlFKUaBVNJgJoFkdAlFIHJ5mh/XV9lChoBmgJaA9DCJAV/DaEc3BAlIaUUpRoFU0DA2gWR0CUUwmzjWCmdX2UKGgGaAloD0MInYNnQtN2cECUhpRSlGgVTVUCaBZHQJRZjAh0Qsh1fZQoaAZoCWgPQwjoZn+gXH5qQJSGlFKUaBVNfwJoFkdAlFqJ8a4tpXV9lChoBmgJaA9DCMNHxJRIfHBAlIaUUpRoFU1nAmgWR0CUXSgMMI/rdX2UKGgGaAloD0MIQURq2sUbb0CUhpRSlGgVTccBaBZHQJRj3gl4TsZ1fZQoaAZoCWgPQwi2niEcM7xsQJSGlFKUaBVNaQJoFkdAlHGKK508vHV9lChoBmgJaA9DCAtfX+sSoXBAlIaUUpRoFU37AWgWR0CUdn238XN1dX2UKGgGaAloD0MI39416EtVa0CUhpRSlGgVTVsCaBZHQJR52zRhMJx1fZQoaAZoCWgPQwhyTYHMzhBeQJSGlFKUaBVN6ANoFkdAlHqr3j+72HV9lChoBmgJaA9DCLdGBONgVGtAlIaUUpRoFU0vAmgWR0CUezl0o0AMdX2UKGgGaAloD0MIIEWduYcCb0CUhpRSlGgVTQcDaBZHQJR7WpS75Ed1fZQoaAZoCWgPQwgEBHP0+FNtQJSGlFKUaBVNRgJoFkdAlHznt0FKTXV9lChoBmgJaA9DCKMeotEdmGpAlIaUUpRoFU0bAmgWR0CUg2m7aqS6dX2UKGgGaAloD0MIuW5KeS2IbECUhpRSlGgVTfcBaBZHQJSI1mK64Dt1fZQoaAZoCWgPQwh+G2K8Zl9uQJSGlFKUaBVNiQJoFkdAlIx3EAHVw3V9lChoBmgJaA9DCJoIG57eiG5AlIaUUpRoFU1qAmgWR0CUjODiwSrYdX2UKGgGaAloD0MIM6fLYmL4bUCUhpRSlGgVTfEBaBZHQJSOjKzRhMJ1fZQoaAZoCWgPQwjytPzA1fRrQJSGlFKUaBVN3gFoFkdAlJSWdZq20HV9lChoBmgJaA9DCPwcHy3OklhAlIaUUpRoFU3oA2gWR0CUo1HUMG5ddX2UKGgGaAloD0MI2C5tOKxebUCUhpRSlGgVTcsBaBZHQJSlEN0/4Zd1fZQoaAZoCWgPQwiT/8nfvd1dQJSGlFKUaBVN6ANoFkdAlKZk30f5lHV9lChoBmgJaA9DCPj/ccKENXFAlIaUUpRoFU36AWgWR0CUp7+6iCardX2UKGgGaAloD0MIg/sBD4xHb0CUhpRSlGgVTTsCaBZHQJSnxA+pwS91fZQoaAZoCWgPQwjlDMUdb3FwQJSGlFKUaBVN/wFoFkdAlKvEmplz2nV9lChoBmgJaA9DCPC+KheqaWxAlIaUUpRoFU3uAWgWR0CUrCeVLSNPdX2UKGgGaAloD0MIB5j5Dv7UbECUhpRSlGgVTb8BaBZHQJSu1CUornV1fZQoaAZoCWgPQwgSTgte9KZtQJSGlFKUaBVNXQJoFkdAlK+YvnKW9nV9lChoBmgJaA9DCJgxBWucInFAlIaUUpRoFU2uAWgWR0CUsEt5D7ZWdX2UKGgGaAloD0MIMzffiO5bbECUhpRSlGgVTaIBaBZHQJSwumWMS9N1fZQoaAZoCWgPQwgQ641aYclgQJSGlFKUaBVN6ANoFkdAlLSWDHwPRXV9lChoBmgJaA9DCILknUMZjWpAlIaUUpRoFU2hAmgWR0CUtjvkili0dX2UKGgGaAloD0MIH5+QnTevakCUhpRSlGgVTTECaBZHQJTA9TDO1OV1fZQoaAZoCWgPQwiMZmX7kDNvQJSGlFKUaBVNpQFoFkdAlMbFJg9eQnV9lChoBmgJaA9DCOS8/4+TGGpAlIaUUpRoFU3wAmgWR0CUzPDPGACodX2UKGgGaAloD0MIsAPnjOhNcECUhpRSlGgVTfABaBZHQJTRjQMQVbl1fZQoaAZoCWgPQwiel4qN+exsQJSGlFKUaBVNTAJoFkdAlNjAXqJMx3V9lChoBmgJaA9DCK9DNSVZ+1dAlIaUUpRoFU3oA2gWR0CU20UHIIWydX2UKGgGaAloD0MIWcLaGDvSakCUhpRSlGgVTR0CaBZHQJTb3hjvuw51fZQoaAZoCWgPQwhtUzwuqj9pQJSGlFKUaBVNFAJoFkdAlNwp5zHS4XV9lChoBmgJaA9DCJG5Mqg2ym9AlIaUUpRoFU0QAmgWR0CU4WR15jYqdX2UKGgGaAloD0MI527XS9MWb0CUhpRSlGgVTcICaBZHQJTkt9b5dnl1fZQoaAZoCWgPQwg8M8FwLgJtQJSGlFKUaBVNTwNoFkdAlOqMY64lQnV9lChoBmgJaA9DCC7KbJDJxG1AlIaUUpRoFU2kAWgWR0CU64reZXuFdX2UKGgGaAloD0MIPu3w12TbbUCUhpRSlGgVTfQBaBZHQJTsAnmaH9F1fZQoaAZoCWgPQwiJXkaxHNxwQJSGlFKUaBVNhgJoFkdAlOzo+4b0e3V9lChoBmgJaA9DCOfib3vC/3BAlIaUUpRoFU0xA2gWR0CU9RvNu+AVdX2UKGgGaAloD0MIqB5pcFvTK0CUhpRSlGgVTV4BaBZHQJT4Wxu89Oh1fZQoaAZoCWgPQwgvMgG/RqZgQJSGlFKUaBVN6ANoFkdAlPp+oxYaHnV9lChoBmgJaA9DCDXwoxp20m9AlIaUUpRoFU2zAWgWR0CU+sl6qsEJdX2UKGgGaAloD0MItYr+0EzDYECUhpRSlGgVTegDaBZHQJUAXbM5fdB1fZQoaAZoCWgPQwgwSPq0CpZwQJSGlFKUaBVN5AFoFkdAlQUzFMqSYHV9lChoBmgJaA9DCAVvSKMCcmFAlIaUUpRoFU3oA2gWR0CVBiaNuLrHdX2UKGgGaAloD0MIf6SIDCtJa0CUhpRSlGgVTbEBaBZHQJUGVKujh1l1fZQoaAZoCWgPQwj2twTgH31vQJSGlFKUaBVNdwJoFkdAlQdmwJPZZnV9lChoBmgJaA9DCHMtWoA27m5AlIaUUpRoFU3SAWgWR0CVDQRZEDyOdX2UKGgGaAloD0MIyQT8GkkKa0CUhpRSlGgVTb4BaBZHQJUO6QXAM2F1fZQoaAZoCWgPQwjYuz/eK49nQJSGlFKUaBVNbQJoFkdAlQ8qFdszmHV9lChoBmgJaA9DCAHcLF5skXBAlIaUUpRoFU2vAWgWR0CVEDG9pRGddX2UKGgGaAloD0MIB14td2ZdakCUhpRSlGgVTe8BaBZHQJUUxHZsbed1fZQoaAZoCWgPQwjwEwfQb3RsQJSGlFKUaBVN/AFoFkdAlRUMbNr0rnV9lChoBmgJaA9DCL4yb9V1ZGtAlIaUUpRoFU3PAWgWR0CVGP6KLsKLdX2UKGgGaAloD0MIcQSpFDsBWkCUhpRSlGgVTegDaBZHQJUc03bVSXN1fZQoaAZoCWgPQwgmx53SQbFrQJSGlFKUaBVNswFoFkdAlR2W56MR6HV9lChoBmgJaA9DCOaw+47h421AlIaUUpRoFU2/AWgWR0CVHmie/YapdX2UKGgGaAloD0MI8DLDRtmGa0CUhpRSlGgVTfwBaBZHQJUf3r5ZbIN1fZQoaAZoCWgPQwjdlzPblTdpQJSGlFKUaBVN/wFoFkdAlSWDIV/MGHV9lChoBmgJaA9DCEjCvp2EeHBAlIaUUpRoFU3WAWgWR0CVJow6QvHtdX2UKGgGaAloD0MI9fQR+EPJaUCUhpRSlGgVTdEBaBZHQJUnATsY2sJ1fZQoaAZoCWgPQwg9u3zrQ8JpQJSGlFKUaBVN7QFoFkdAlShFjVhCt3V9lChoBmgJaA9DCNKMRdNZ2G1AlIaUUpRoFU0UAmgWR0CVK3S619fDdX2UKGgGaAloD0MITpoGRXM/bkCUhpRSlGgVTdABaBZHQJUwx1cMVlB1fZQoaAZoCWgPQwiaXmIsE7JwQJSGlFKUaBVNmwFoFkdAlTJuYplSTHV9lChoBmgJaA9DCHcwYp+ASm1AlIaUUpRoFU33AWgWR0CVM2enAIppdX2UKGgGaAloD0MIvLA1W/mEbECUhpRSlGgVTewBaBZHQJVDihJyyUt1fZQoaAZoCWgPQwhMwoU8gqtrQJSGlFKUaBVN1QFoFkdAlUYAtOEdvXV9lChoBmgJaA9DCOmcn+K4fWhAlIaUUpRoFU35AWgWR0CVTTQfIS13dX2UKGgGaAloD0MIlDMUd/wDcECUhpRSlGgVTa0CaBZHQJVNq5J9RaZ1fZQoaAZoCWgPQwhNh07PO8VsQJSGlFKUaBVN2wFoFkdAlVF6SX+l03V9lChoBmgJaA9DCJFfP8QGQnBAlIaUUpRoFU0QAmgWR0CVVX/3WWhRdX2UKGgGaAloD0MID0jCvh0Da0CUhpRSlGgVTa0BaBZHQJVW3Ov+wTx1fZQoaAZoCWgPQwjwFkhQfJFqQJSGlFKUaBVN9gFoFkdAlVeKTbFju3V9lChoBmgJaA9DCLrdy31yonBAlIaUUpRoFU2yAWgWR0CVWvfywwCbdX2UKGgGaAloD0MIhpM0f0z6Z0CUhpRSlGgVTc4BaBZHQJVbYyHmA9V1fZQoaAZoCWgPQwjpuvCD8yFRQJSGlFKUaBVN6ANoFkdAlV+OJUHY6HV9lChoBmgJaA9DCNxKr83Gw19AlIaUUpRoFU3oA2gWR0CVYvCMglnidX2UKGgGaAloD0MI61T5npFaaECUhpRSlGgVTecCaBZHQJVlYbcXWOJ1fZQoaAZoCWgPQwi7m6c65HxwQJSGlFKUaBVNmgJoFkdAlW9ZrxiG4HV9lChoBmgJaA9DCIi6D0BqJ11AlIaUUpRoFU3oA2gWR0CVcQUILPUsdX2UKGgGaAloD0MIJNV3ftExYUCUhpRSlGgVTegDaBZHQJV2DMeOn2t1fZQoaAZoCWgPQwjZtb3dErZpQJSGlFKUaBVNsQFoFkdAlX2+Iyj59HV9lChoBmgJaA9DCEG5bd8jWm5AlIaUUpRoFU1nAmgWR0CVhcD0lJHzdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1956, "n_steps": 128, "gamma": 0.9997849971938769, "gae_lambda": 0.9736421989716432, "ent_coef": 0.0036685883935536614, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bab8f0c22c096a7fc246e29c427d09322c3a4e05647c0616ec6330fe7fafe33f
|
3 |
+
size 147469
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f7f50878ee0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7f50878f70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7f5087e040>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7f5087e0d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f7f5087e160>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f7f5087e1f0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7f5087e280>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7f5087e310>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f7f5087e3a0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7f5087e430>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7f5087e4c0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7f5087e550>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f7f508768a0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1001472,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1678103973477132546,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALP4az0p4Fq6FkMnOqfFfLZ+N0a6bbtBuQAAgD8AAIA/ZvaBvcPhNbpEKj468rkUtlghXjuCBmG5AACAPwAAgD/NJKq8jxJzuuaTxDrrRJE1xpjuusoe5rkAAIA/AACAP2Ze6rvP/y28lCa8vMf7cD0181u7g1DouwAAgD8AAIA/mhY+vsXzhzwbezw7cPyUuYl2F75+FHW6AACAPwAAgD/aYNE94WBlPuJZ271lBTq+Ks8CvIuDWr0AAAAAAAAAAObEBD76zpo+a1sSvrRsL77k2RS9OUFAvAAAAAAAAAAAmhkOOntYhLqGBw43z3AhMvIhETs8YSa2AACAPwAAgD+AwHi9j7ZiuvWz7TrAiEK1D1GMu9TjCLoAAIA/AACAP7P81z3e/kI//oqEPUYvG746v749Stp8PQAAAAAAAAAAwFeCvfYIVbpB2A66NdZ3tr8fKLvAZuQ1AACAPwAAgD8zfMo+YYlsPyLcID6uVju+EMsePhcsjLwAAAAAAAAAAJpSMD0p1Gm6c+dhN7M1L7H0ATS78o2AtgAAgD8AAIA/Vg6Jvj8EpD7hYA4+rsNSvgEsE7v9oE88AAAAAAAAAABzeoi9FDaYujbcfTmCbh00/8b6uo8XkrgAAIA/AACAPwA7rz0p8Au6NoYWuzo1HTf66Iu69eqOtgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.0014719999999999178,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIu5unOmR4a0CUhpRSlIwBbJRNrAGMAXSUR0CUOR0JF9a2dX2UKGgGaAloD0MIG6A01CgIXkCUhpRSlGgVTegDaBZHQJRAx5E+gUV1fZQoaAZoCWgPQwhlHY6u0v9vQJSGlFKUaBVN4QFoFkdAlESF/6O5rnV9lChoBmgJaA9DCKryPSNRxXBAlIaUUpRoFU1aAmgWR0CURcE0SAYpdX2UKGgGaAloD0MIscHCSRrHYUCUhpRSlGgVTegDaBZHQJRF9ZdOZb91fZQoaAZoCWgPQwiD29rC8yxDwJSGlFKUaBVNnwFoFkdAlEgty925hHV9lChoBmgJaA9DCH9pUZ/k52tAlIaUUpRoFU39AWgWR0CUS7MdcSoPdX2UKGgGaAloD0MIv0aSIFwjakCUhpRSlGgVTf4BaBZHQJRPBENOM2p1fZQoaAZoCWgPQwieJ56zBaBsQJSGlFKUaBVNJgJoFkdAlFIHJ5mh/XV9lChoBmgJaA9DCJAV/DaEc3BAlIaUUpRoFU0DA2gWR0CUUwmzjWCmdX2UKGgGaAloD0MInYNnQtN2cECUhpRSlGgVTVUCaBZHQJRZjAh0Qsh1fZQoaAZoCWgPQwjoZn+gXH5qQJSGlFKUaBVNfwJoFkdAlFqJ8a4tpXV9lChoBmgJaA9DCMNHxJRIfHBAlIaUUpRoFU1nAmgWR0CUXSgMMI/rdX2UKGgGaAloD0MIQURq2sUbb0CUhpRSlGgVTccBaBZHQJRj3gl4TsZ1fZQoaAZoCWgPQwi2niEcM7xsQJSGlFKUaBVNaQJoFkdAlHGKK508vHV9lChoBmgJaA9DCAtfX+sSoXBAlIaUUpRoFU37AWgWR0CUdn238XN1dX2UKGgGaAloD0MI39416EtVa0CUhpRSlGgVTVsCaBZHQJR52zRhMJx1fZQoaAZoCWgPQwhyTYHMzhBeQJSGlFKUaBVN6ANoFkdAlHqr3j+72HV9lChoBmgJaA9DCLdGBONgVGtAlIaUUpRoFU0vAmgWR0CUezl0o0AMdX2UKGgGaAloD0MIIEWduYcCb0CUhpRSlGgVTQcDaBZHQJR7WpS75Ed1fZQoaAZoCWgPQwgEBHP0+FNtQJSGlFKUaBVNRgJoFkdAlHznt0FKTXV9lChoBmgJaA9DCKMeotEdmGpAlIaUUpRoFU0bAmgWR0CUg2m7aqS6dX2UKGgGaAloD0MIuW5KeS2IbECUhpRSlGgVTfcBaBZHQJSI1mK64Dt1fZQoaAZoCWgPQwh+G2K8Zl9uQJSGlFKUaBVNiQJoFkdAlIx3EAHVw3V9lChoBmgJaA9DCJoIG57eiG5AlIaUUpRoFU1qAmgWR0CUjODiwSrYdX2UKGgGaAloD0MIM6fLYmL4bUCUhpRSlGgVTfEBaBZHQJSOjKzRhMJ1fZQoaAZoCWgPQwjytPzA1fRrQJSGlFKUaBVN3gFoFkdAlJSWdZq20HV9lChoBmgJaA9DCPwcHy3OklhAlIaUUpRoFU3oA2gWR0CUo1HUMG5ddX2UKGgGaAloD0MI2C5tOKxebUCUhpRSlGgVTcsBaBZHQJSlEN0/4Zd1fZQoaAZoCWgPQwiT/8nfvd1dQJSGlFKUaBVN6ANoFkdAlKZk30f5lHV9lChoBmgJaA9DCPj/ccKENXFAlIaUUpRoFU36AWgWR0CUp7+6iCardX2UKGgGaAloD0MIg/sBD4xHb0CUhpRSlGgVTTsCaBZHQJSnxA+pwS91fZQoaAZoCWgPQwjlDMUdb3FwQJSGlFKUaBVN/wFoFkdAlKvEmplz2nV9lChoBmgJaA9DCPC+KheqaWxAlIaUUpRoFU3uAWgWR0CUrCeVLSNPdX2UKGgGaAloD0MIB5j5Dv7UbECUhpRSlGgVTb8BaBZHQJSu1CUornV1fZQoaAZoCWgPQwgSTgte9KZtQJSGlFKUaBVNXQJoFkdAlK+YvnKW9nV9lChoBmgJaA9DCJgxBWucInFAlIaUUpRoFU2uAWgWR0CUsEt5D7ZWdX2UKGgGaAloD0MIMzffiO5bbECUhpRSlGgVTaIBaBZHQJSwumWMS9N1fZQoaAZoCWgPQwgQ641aYclgQJSGlFKUaBVN6ANoFkdAlLSWDHwPRXV9lChoBmgJaA9DCILknUMZjWpAlIaUUpRoFU2hAmgWR0CUtjvkili0dX2UKGgGaAloD0MIH5+QnTevakCUhpRSlGgVTTECaBZHQJTA9TDO1OV1fZQoaAZoCWgPQwiMZmX7kDNvQJSGlFKUaBVNpQFoFkdAlMbFJg9eQnV9lChoBmgJaA9DCOS8/4+TGGpAlIaUUpRoFU3wAmgWR0CUzPDPGACodX2UKGgGaAloD0MIsAPnjOhNcECUhpRSlGgVTfABaBZHQJTRjQMQVbl1fZQoaAZoCWgPQwiel4qN+exsQJSGlFKUaBVNTAJoFkdAlNjAXqJMx3V9lChoBmgJaA9DCK9DNSVZ+1dAlIaUUpRoFU3oA2gWR0CU20UHIIWydX2UKGgGaAloD0MIWcLaGDvSakCUhpRSlGgVTR0CaBZHQJTb3hjvuw51fZQoaAZoCWgPQwhtUzwuqj9pQJSGlFKUaBVNFAJoFkdAlNwp5zHS4XV9lChoBmgJaA9DCJG5Mqg2ym9AlIaUUpRoFU0QAmgWR0CU4WR15jYqdX2UKGgGaAloD0MI527XS9MWb0CUhpRSlGgVTcICaBZHQJTkt9b5dnl1fZQoaAZoCWgPQwg8M8FwLgJtQJSGlFKUaBVNTwNoFkdAlOqMY64lQnV9lChoBmgJaA9DCC7KbJDJxG1AlIaUUpRoFU2kAWgWR0CU64reZXuFdX2UKGgGaAloD0MIPu3w12TbbUCUhpRSlGgVTfQBaBZHQJTsAnmaH9F1fZQoaAZoCWgPQwiJXkaxHNxwQJSGlFKUaBVNhgJoFkdAlOzo+4b0e3V9lChoBmgJaA9DCOfib3vC/3BAlIaUUpRoFU0xA2gWR0CU9RvNu+AVdX2UKGgGaAloD0MIqB5pcFvTK0CUhpRSlGgVTV4BaBZHQJT4Wxu89Oh1fZQoaAZoCWgPQwgvMgG/RqZgQJSGlFKUaBVN6ANoFkdAlPp+oxYaHnV9lChoBmgJaA9DCDXwoxp20m9AlIaUUpRoFU2zAWgWR0CU+sl6qsEJdX2UKGgGaAloD0MItYr+0EzDYECUhpRSlGgVTegDaBZHQJUAXbM5fdB1fZQoaAZoCWgPQwgwSPq0CpZwQJSGlFKUaBVN5AFoFkdAlQUzFMqSYHV9lChoBmgJaA9DCAVvSKMCcmFAlIaUUpRoFU3oA2gWR0CVBiaNuLrHdX2UKGgGaAloD0MIf6SIDCtJa0CUhpRSlGgVTbEBaBZHQJUGVKujh1l1fZQoaAZoCWgPQwj2twTgH31vQJSGlFKUaBVNdwJoFkdAlQdmwJPZZnV9lChoBmgJaA9DCHMtWoA27m5AlIaUUpRoFU3SAWgWR0CVDQRZEDyOdX2UKGgGaAloD0MIyQT8GkkKa0CUhpRSlGgVTb4BaBZHQJUO6QXAM2F1fZQoaAZoCWgPQwjYuz/eK49nQJSGlFKUaBVNbQJoFkdAlQ8qFdszmHV9lChoBmgJaA9DCAHcLF5skXBAlIaUUpRoFU2vAWgWR0CVEDG9pRGddX2UKGgGaAloD0MIB14td2ZdakCUhpRSlGgVTe8BaBZHQJUUxHZsbed1fZQoaAZoCWgPQwjwEwfQb3RsQJSGlFKUaBVN/AFoFkdAlRUMbNr0rnV9lChoBmgJaA9DCL4yb9V1ZGtAlIaUUpRoFU3PAWgWR0CVGP6KLsKLdX2UKGgGaAloD0MIcQSpFDsBWkCUhpRSlGgVTegDaBZHQJUc03bVSXN1fZQoaAZoCWgPQwgmx53SQbFrQJSGlFKUaBVNswFoFkdAlR2W56MR6HV9lChoBmgJaA9DCOaw+47h421AlIaUUpRoFU2/AWgWR0CVHmie/YapdX2UKGgGaAloD0MI8DLDRtmGa0CUhpRSlGgVTfwBaBZHQJUf3r5ZbIN1fZQoaAZoCWgPQwjdlzPblTdpQJSGlFKUaBVN/wFoFkdAlSWDIV/MGHV9lChoBmgJaA9DCEjCvp2EeHBAlIaUUpRoFU3WAWgWR0CVJow6QvHtdX2UKGgGaAloD0MI9fQR+EPJaUCUhpRSlGgVTdEBaBZHQJUnATsY2sJ1fZQoaAZoCWgPQwg9u3zrQ8JpQJSGlFKUaBVN7QFoFkdAlShFjVhCt3V9lChoBmgJaA9DCNKMRdNZ2G1AlIaUUpRoFU0UAmgWR0CVK3S619fDdX2UKGgGaAloD0MITpoGRXM/bkCUhpRSlGgVTdABaBZHQJUwx1cMVlB1fZQoaAZoCWgPQwiaXmIsE7JwQJSGlFKUaBVNmwFoFkdAlTJuYplSTHV9lChoBmgJaA9DCHcwYp+ASm1AlIaUUpRoFU33AWgWR0CVM2enAIppdX2UKGgGaAloD0MIvLA1W/mEbECUhpRSlGgVTewBaBZHQJVDihJyyUt1fZQoaAZoCWgPQwhMwoU8gqtrQJSGlFKUaBVN1QFoFkdAlUYAtOEdvXV9lChoBmgJaA9DCOmcn+K4fWhAlIaUUpRoFU35AWgWR0CVTTQfIS13dX2UKGgGaAloD0MIlDMUd/wDcECUhpRSlGgVTa0CaBZHQJVNq5J9RaZ1fZQoaAZoCWgPQwhNh07PO8VsQJSGlFKUaBVN2wFoFkdAlVF6SX+l03V9lChoBmgJaA9DCJFfP8QGQnBAlIaUUpRoFU0QAmgWR0CVVX/3WWhRdX2UKGgGaAloD0MID0jCvh0Da0CUhpRSlGgVTa0BaBZHQJVW3Ov+wTx1fZQoaAZoCWgPQwjwFkhQfJFqQJSGlFKUaBVN9gFoFkdAlVeKTbFju3V9lChoBmgJaA9DCLrdy31yonBAlIaUUpRoFU2yAWgWR0CVWvfywwCbdX2UKGgGaAloD0MIhpM0f0z6Z0CUhpRSlGgVTc4BaBZHQJVbYyHmA9V1fZQoaAZoCWgPQwjpuvCD8yFRQJSGlFKUaBVN6ANoFkdAlV+OJUHY6HV9lChoBmgJaA9DCNxKr83Gw19AlIaUUpRoFU3oA2gWR0CVYvCMglnidX2UKGgGaAloD0MI61T5npFaaECUhpRSlGgVTecCaBZHQJVlYbcXWOJ1fZQoaAZoCWgPQwi7m6c65HxwQJSGlFKUaBVNmgJoFkdAlW9ZrxiG4HV9lChoBmgJaA9DCIi6D0BqJ11AlIaUUpRoFU3oA2gWR0CVcQUILPUsdX2UKGgGaAloD0MIJNV3ftExYUCUhpRSlGgVTegDaBZHQJV2DMeOn2t1fZQoaAZoCWgPQwjZtb3dErZpQJSGlFKUaBVNsQFoFkdAlX2+Iyj59HV9lChoBmgJaA9DCEG5bd8jWm5AlIaUUpRoFU1nAmgWR0CVhcD0lJHzdWUu"
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 1956,
|
80 |
+
"n_steps": 128,
|
81 |
+
"gamma": 0.9997849971938769,
|
82 |
+
"gae_lambda": 0.9736421989716432,
|
83 |
+
"ent_coef": 0.0036685883935536614,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:de25af184cf3e6ecf757c88c00190ec676fc10aa8828d62e8c230b8e27667ccd
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:516a78047a6969cdb598ad1b134904de0f76d9e8adbb5df0a9cc3f10fce1193b
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (256 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 205.44952812966784, "std_reward": 69.004333759428, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-06T12:41:52.492721"}
|