File size: 6,519 Bytes
3d398e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
license: mit
base_model: microsoft/deberta-v3-base
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
- precision
- recall
model-index:
- name: 008-microsoft-deberta-v3-base-finetuned-yahoo-800_200
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 008-microsoft-deberta-v3-base-finetuned-yahoo-800_200

This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1139
- F1: 0.6463
- Accuracy: 0.65
- Precision: 0.6514
- Recall: 0.65
- System Ram Used: 4.2190
- System Ram Total: 83.4807
- Gpu Ram Allocated: 2.0914
- Gpu Ram Cached: 24.6602
- Gpu Ram Total: 39.5640
- Gpu Utilization: 33
- Disk Space Used: 31.6928
- Disk Space Total: 78.1898

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     | Accuracy | Precision | Recall | System Ram Used | System Ram Total | Gpu Ram Allocated | Gpu Ram Cached | Gpu Ram Total | Gpu Utilization | Disk Space Used | Disk Space Total |
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|:---------:|:------:|:---------------:|:----------------:|:-----------------:|:--------------:|:-------------:|:---------------:|:---------------:|:----------------:|
| 2.2992        | 0.52  | 13   | 2.3031          | 0.0182 | 0.1      | 0.01      | 0.1    | 3.9340          | 83.4807          | 2.0915            | 24.6484        | 39.5640       | 50              | 24.7853         | 78.1898          |
| 2.3096        | 1.04  | 26   | 2.2984          | 0.0182 | 0.1      | 0.01      | 0.1    | 4.1195          | 83.4807          | 2.0915            | 24.6602        | 39.5640       | 43              | 29.6206         | 78.1898          |
| 2.2906        | 1.56  | 39   | 2.2852          | 0.0648 | 0.145    | 0.0525    | 0.145  | 4.2050          | 83.4807          | 2.0915            | 24.6602        | 39.5640       | 51              | 29.6206         | 78.1898          |
| 2.2723        | 2.08  | 52   | 2.2198          | 0.1283 | 0.225    | 0.1625    | 0.225  | 4.2165          | 83.4807          | 2.0915            | 24.6602        | 39.5640       | 43              | 31.6924         | 78.1898          |
| 2.1387        | 2.6   | 65   | 2.0293          | 0.2580 | 0.335    | 0.2655    | 0.335  | 4.2218          | 83.4807          | 2.0916            | 24.6602        | 39.5640       | 56              | 31.6925         | 78.1898          |
| 1.9534        | 3.12  | 78   | 1.8757          | 0.3730 | 0.4      | 0.4419    | 0.4    | 4.2092          | 83.4807          | 2.0915            | 24.6602        | 39.5640       | 41              | 31.6925         | 78.1898          |
| 1.7689        | 3.64  | 91   | 1.7209          | 0.4443 | 0.48     | 0.5198    | 0.48   | 4.2303          | 83.4807          | 2.0915            | 24.6602        | 39.5640       | 46              | 31.6925         | 78.1898          |
| 1.6052        | 4.16  | 104  | 1.6318          | 0.5044 | 0.525    | 0.5139    | 0.525  | 4.2297          | 83.4807          | 2.0915            | 24.6602        | 39.5640       | 45              | 31.6926         | 78.1898          |
| 1.4606        | 4.68  | 117  | 1.4969          | 0.5539 | 0.575    | 0.5788    | 0.575  | 4.2315          | 83.4807          | 2.0915            | 24.6602        | 39.5640       | 47              | 31.6926         | 78.1898          |
| 1.2963        | 5.2   | 130  | 1.3920          | 0.6037 | 0.61     | 0.6063    | 0.61   | 4.2420          | 83.4807          | 2.0916            | 24.6602        | 39.5640       | 43              | 31.6926         | 78.1898          |
| 1.1948        | 5.72  | 143  | 1.3030          | 0.6251 | 0.63     | 0.6292    | 0.63   | 4.2687          | 83.4807          | 2.0915            | 24.6602        | 39.5640       | 48              | 31.6926         | 78.1898          |
| 1.0248        | 6.24  | 156  | 1.2568          | 0.6184 | 0.625    | 0.6354    | 0.625  | 4.2596          | 83.4807          | 2.0915            | 24.6602        | 39.5640       | 50              | 31.6927         | 78.1898          |
| 0.9509        | 6.76  | 169  | 1.1911          | 0.6448 | 0.65     | 0.6552    | 0.65   | 4.2625          | 83.4807          | 2.0915            | 24.6602        | 39.5640       | 44              | 31.6927         | 78.1898          |
| 0.9081        | 7.28  | 182  | 1.1784          | 0.6441 | 0.655    | 0.6450    | 0.655  | 4.1955          | 83.4807          | 2.0915            | 24.6602        | 39.5640       | 50              | 31.6927         | 78.1898          |
| 0.7629        | 7.8   | 195  | 1.1354          | 0.6598 | 0.655    | 0.6737    | 0.655  | 4.1868          | 83.4807          | 2.0915            | 24.6602        | 39.5640       | 44              | 31.6927         | 78.1898          |
| 0.7348        | 8.32  | 208  | 1.1369          | 0.6430 | 0.65     | 0.6483    | 0.65   | 4.2168          | 83.4807          | 2.0915            | 24.6602        | 39.5640       | 43              | 31.6927         | 78.1898          |
| 0.7443        | 8.84  | 221  | 1.1274          | 0.6531 | 0.66     | 0.6576    | 0.66   | 4.2273          | 83.4807          | 2.0915            | 24.6602        | 39.5640       | 51              | 31.6927         | 78.1898          |
| 0.5945        | 9.36  | 234  | 1.1228          | 0.6640 | 0.67     | 0.6694    | 0.67   | 4.1791          | 83.4807          | 2.0915            | 24.6602        | 39.5640       | 44              | 31.6928         | 78.1898          |
| 0.6885        | 9.88  | 247  | 1.1145          | 0.6463 | 0.65     | 0.6514    | 0.65   | 4.1849          | 83.4807          | 2.0915            | 24.6602        | 39.5640       | 48              | 31.6928         | 78.1898          |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3