--- language: en license: mit base_model: answerdotai/ModernBERT-large tags: - token-classification - ModernBERT-large datasets: - disham993/ElectricalNER metrics: - epoch: 1.0 - eval_precision: 0.9170362009191324 - eval_recall: 0.917258064516129 - eval_f1: 0.9171471193000846 - eval_accuracy: 0.965673339950132 - eval_runtime: 3.7584 - eval_samples_per_second: 401.504 - eval_steps_per_second: 6.386 --- # disham993/electrical-ner-modernbert-large ## Model description This model is fine-tuned from [answerdotai/ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large) for token-classification tasks. ## Training Data The model was trained on the disham993/ElectricalNER dataset. ## Model Details - **Base Model:** answerdotai/ModernBERT-large - **Task:** token-classification - **Language:** en - **Dataset:** disham993/ElectricalNER ## Training procedure ### Training hyperparameters [Please add your training hyperparameters here] ## Evaluation results ### Metrics\n- epoch: 1.0\n- eval_precision: 0.9170362009191324\n- eval_recall: 0.917258064516129\n- eval_f1: 0.9171471193000846\n- eval_accuracy: 0.965673339950132\n- eval_runtime: 3.7584\n- eval_samples_per_second: 401.504\n- eval_steps_per_second: 6.386 ## Usage ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("disham993/electrical-ner-modernbert-large") model = AutoModel.from_pretrained("disham993/electrical-ner-modernbert-large") ``` ## Limitations and bias [Add any known limitations or biases of the model] ## Training Infrastructure [Add details about training infrastructure used] ## Last update 2024-12-30