diskshima's picture
Push Q-Learning agent to Hub
21f6901 unverified
|
raw
history blame
858 Bytes
metadata
tags:
  - Taxi-v3
  - q-learning
  - reinforcement-learning
  - custom-implementation
model-index:
  - name: deep-rl-class-unit02-Taxi-v3
    results:
      - metrics:
          - type: mean_reward
            value: 7.56 +/- 2.71
            name: mean_reward
        task:
          type: reinforcement-learning
          name: reinforcement-learning
        dataset:
          name: Taxi-v3
          type: Taxi-v3

Q-Learning Agent playing Taxi-v3

This is a trained model of a Q-Learning agent playing Taxi-v3 .

Usage

model = load_from_hub(repo_id="diskshima/deep-rl-class-unit02-Taxi-v3", filename="q-learning.pkl")

# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])

evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"])