Commit
•
d08db9b
1
Parent(s):
ca97396
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,78 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
2 |
license: mit
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
tags:
|
5 |
+
- audio
|
6 |
+
- automatic-speech-recognition
|
7 |
license: mit
|
8 |
+
library_name: ctranslate2
|
9 |
---
|
10 |
+
|
11 |
+
# Distil-Whisper: distil-large-v3 for CTranslate2
|
12 |
+
|
13 |
+
This repository contains the model weights for [distil-large-v3](https://huggingface.co/distil-whisper/distil-large-v3)
|
14 |
+
converted to [CTranslate2](https://github.com/OpenNMT/CTranslate2) format. CTranslate2 is a fast inference engine for
|
15 |
+
Transformer models and is the supported backend for the [Faster-Whisper](https://github.com/systran/faster-whisper) package.
|
16 |
+
|
17 |
+
## Usage
|
18 |
+
|
19 |
+
To use the model in Faster-Whisper, first install the PyPi package according to the [official instructions](https://github.com/SYSTRAN/faster-whisper#installation).
|
20 |
+
For this example, we'll also install 🤗 Datasets to load a toy audio dataset from the Hugging Face Hub:
|
21 |
+
|
22 |
+
```bash
|
23 |
+
pip install --upgrade pip
|
24 |
+
pip install --upgrade faster-whisper datasets[audio]
|
25 |
+
```
|
26 |
+
|
27 |
+
The following code snippet loads the distil-large-v3 model and runs inference on an example file from the LibriSpeech ASR
|
28 |
+
dataset:
|
29 |
+
|
30 |
+
```python
|
31 |
+
import torch
|
32 |
+
from faster_whisper import WhisperModel
|
33 |
+
from datasets import load_dataset
|
34 |
+
|
35 |
+
# define our torch configuration
|
36 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
37 |
+
compute_type = "float16" if torch.cuda.is_available() else "float32"
|
38 |
+
|
39 |
+
# load model on GPU if available, else cpu
|
40 |
+
model = WhisperModel("distil-large-v3", device=device, compute_type=compute_type)
|
41 |
+
|
42 |
+
# load toy dataset for example
|
43 |
+
dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
44 |
+
sample = dataset[1]["audio"]["path"]
|
45 |
+
|
46 |
+
segments, info = model.transcribe(sample, beam_size=1)
|
47 |
+
|
48 |
+
for segment in segments:
|
49 |
+
print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))
|
50 |
+
```
|
51 |
+
|
52 |
+
To transcribe a local audio file, simply pass the path to the audio file as the `audio` argument to transcribe:
|
53 |
+
|
54 |
+
```python
|
55 |
+
segments, info = model.transcribe("audio.mp3", beam_size=1)
|
56 |
+
```
|
57 |
+
|
58 |
+
## Model Details
|
59 |
+
|
60 |
+
For more information about the distil-large-v3 model, refer to the original [model card](https://huggingface.co/distil-whisper/distil-large-v3).
|
61 |
+
|
62 |
+
## License
|
63 |
+
|
64 |
+
Distil-Whisper inherits the [MIT license](https://github.com/huggingface/distil-whisper/blob/main/LICENSE) from OpenAI's Whisper model.
|
65 |
+
|
66 |
+
## Citation
|
67 |
+
|
68 |
+
If you use this model, please consider citing the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430):
|
69 |
+
```
|
70 |
+
@misc{gandhi2023distilwhisper,
|
71 |
+
title={Distil-Whisper: Robust Knowledge Distillation via Large-Scale Pseudo Labelling},
|
72 |
+
author={Sanchit Gandhi and Patrick von Platen and Alexander M. Rush},
|
73 |
+
year={2023},
|
74 |
+
eprint={2311.00430},
|
75 |
+
archivePrefix={arXiv},
|
76 |
+
primaryClass={cs.CL}
|
77 |
+
}
|
78 |
+
```
|