File size: 1,904 Bytes
2b28e0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0023202
 
 
 
2b28e0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
license: apache-2.0
base_model: teknium/OpenHermes-2.5-Mistral-7B
tags:
- trl
- sft
- generated_from_trainer
datasets:
- generator
model-index:
- name: criticon-sft-v0.1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# criticon-sft-v0.1

This model is a fine-tuned version of [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4668

## WandB logs

- [criticon logs](https://wandb.ai/argilla-io/criticon/runs/g8sd5jhi?nw=nwuserplagussargilla)

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.6226        | 0.29  | 500  | 0.6215          |
| 0.5616        | 0.57  | 1000 | 0.5684          |
| 0.5384        | 0.86  | 1500 | 0.5288          |
| 0.4248        | 1.14  | 2000 | 0.5098          |
| 0.3969        | 1.43  | 2500 | 0.4809          |
| 0.3933        | 1.72  | 3000 | 0.4668          |


### Framework versions

- Transformers 4.38.0
- Pytorch 2.1.1+cu121
- Datasets 2.16.1
- Tokenizers 0.15.2