File size: 2,065 Bytes
df1f465 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: mit
base_model: facebook/bart-large-cnn
tags:
- generated_from_trainer
datasets:
- samsum
metrics:
- rouge
model-index:
- name: mode_tuned_peft
results: []
library_name: peft
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mode_tuned_peft
This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the samsum dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5220
- Rouge1: 40.6099
- Rouge2: 20.4138
- Rougel: 31.1095
- Rougelsum: 37.6804
- Gen Len: 58.11
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 0.5144 | 1.0 | 14732 | 0.5494 | 39.171 | 19.3682 | 29.7493 | 36.2965 | 58.6773 |
| 0.5694 | 2.0 | 29464 | 0.5357 | 40.1584 | 20.0293 | 30.5791 | 37.1361 | 58.0648 |
| 0.3497 | 3.0 | 44196 | 0.5277 | 41.0391 | 20.7891 | 31.5244 | 38.1502 | 58.0086 |
| 0.3444 | 4.0 | 58928 | 0.5255 | 40.6698 | 20.543 | 31.2399 | 37.8126 | 58.3716 |
| 0.3495 | 5.0 | 73660 | 0.5220 | 40.6099 | 20.4138 | 31.1095 | 37.6804 | 58.11 |
### Framework versions
- PEFT 0.4.0
- Transformers 4.42.3
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|