divyeshrajpura commited on
Commit
63579c2
1 Parent(s): d0b39af

Initial Commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -872.25 +/- 711.99
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b099e6eaf80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b099e6eb010>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b099e6eb0a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b099e6eb130>", "_build": "<function ActorCriticPolicy._build at 0x7b099e6eb1c0>", "forward": "<function ActorCriticPolicy.forward at 0x7b099e6eb250>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b099e6eb2e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b099e6eb370>", "_predict": "<function ActorCriticPolicy._predict at 0x7b099e6eb400>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b099e6eb490>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b099e6eb520>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b099e6eb5b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b099e6e7000>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 16384, "_total_timesteps": 10000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692026731013204464, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIXhib5sWb0/IKkUv0ewrb49eNe9XKYfvgAAAAAAAAAAzZQJPe6ZuD/XoI8+0AO/PXO3L72GhK29AAAAAAAAAACzFoo+JNkYPxIwGT+ve4K/yhbQvpivVb4AAAAAAAAAABrdIT09z7o/4aImP9ssnz5d4Ei9zUoFvgAAAAAAAAAA43fMPrX9lj8ur/M+MIAfvwY/xD6oVn8+AAAAAAAAAAC+gTe/4/+gPqzHqL8PCaS/wLozPwoCsbsAAAAAAAAAANAZEz/VwV8/KB2uP7WeSr8HA36/ImtMvgAAAAAAAAAAMzxpPQk0ID225AG+T5qWv2YKOz/fdgc/AAAAAAAAgD9Wr/k+G1sWvtVJcjzxN006ukOHPYJZBzgAAIA/AACAP22jvT5Mw0s/aIhuP5Ric79mUAq/q20AvgAAAAAAAAAAyFeOvlOlnD9MOD+/ljrYvs/2YT71Eqe9AAAAAAAAAAD9RA0/H0kyPgMgdT8nCqq/DMQcvwC1wb0AAAAAAAAAAGYUEz3idY4/K1gvPgLPUb9AUaW94uw8vQAAAAAAAAAAzSfTvWxOZD8eI7K+LuRov5vnaz7DVdY9AAAAAAAAAAANrTo+IxhOP/Ns3D67+12/SzQIvsgDrT0AAAAAAAAAAMsMeL/3vwE/upu5vyEJjr9SPVA/4M/APgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.6384000000000001, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFzWIEr5IpaMAWyUS0GMAXSUR0ByrERpUPxydX2UKGgGR8B1JWbx3FDOaAdLV2gIR0ByrOKBNEgGdX2UKGgGR8Bqm6UX531SaAdLU2gIR0ByrbIEKVpsdX2UKGgGR8BpwEl/pdKNaAdLXmgIR0ByrdPFefI0dX2UKGgGR8BoR0WM0gr6aAdLY2gIR0ByrdFI/Z/TdX2UKGgGR8BVF2smv4dqaAdLQmgIR0ByreBjFyaNdX2UKGgGR8BZs+FQEZBLaAdLTmgIR0ByrusaKk2xdX2UKGgGR8B2x/zZpSJkaAdLemgIR0ByrysJY1YRdX2UKGgGR8BT2jot+TePaAdLYmgIR0Byr0WCVbA2dX2UKGgGR8BP3biqABkqaAdLRmgIR0BysEYHgP3BdX2UKGgGR8Bns+J79hqkaAdLTGgIR0BysJX1anrIdX2UKGgGR8BSN1RxcVxkaAdLVmgIR0BysavOhTOxdX2UKGgGR8BxxvI8yN4raAdLRGgIR0BysvOjZcs2dX2UKGgGR8BZQfGQ0XP7aAdLQmgIR0Bys7OxB3RpdX2UKGgGR8By7UBdUsFuaAdLWmgIR0Bys/7hvR7adX2UKGgGR8BzaZoSL61taAdLYmgIR0Bys/nkkrwwdX2UKGgGR8BH2jfvWpZPaAdLR2gIR0BytDfrKNhmdX2UKGgGR8B7D5KK508vaAdLSWgIR0BytE/LTx5LdX2UKGgGR8BaKdxyXD3uaAdLOWgIR0BytIXenAIqdX2UKGgGR8BzQyejEehgaAdLWmgIR0BytHgLqlgudX2UKGgGR8Bti8LDye7MaAdLaWgIR0BytUekpI+XdX2UKGgGR8BfsVmapgkUaAdLWmgIR0BytfTAnDzidX2UKGgGR8Bx/LBtUGVzaAdLd2gIR0BytqXBxgiNdX2UKGgGR8B2wKBf8dgfaAdLbGgIR0ByuMYl6Z6VdX2UKGgGR8BVJRgeA/cGaAdLYGgIR0ByuRjZtelbdX2UKGgGR8BywTvjOs1baAdLXmgIR0ByuTaEi+tbdX2UKGgGR8B08+pOvdM1aAdLSGgIR0Byup/hESdwdX2UKGgGR8BxpLVTaTOgaAdLg2gIR0Byu0Djin50dX2UKGgGR8Ba/bL6k691aAdLaWgIR0Byu23rleWwdX2UKGgGR8BuQpMpPRAsaAdLWWgIR0ByvAo+fRNRdX2UKGgGR8BoqznxJ/XoaAdLXmgIR0ByvS3XqZ+hdX2UKGgGR8B6KeB7NSqEaAdLb2gIR0ByvVoXbdrPdX2UKGgGR8B7X1DkU9IPaAdLWGgIR0ByvYF1SwW4dX2UKGgGR8BwBzKLbYbsaAdLZ2gIR0ByvhzfaYeDdX2UKGgGR8BeUmapgkTpaAdLbWgIR0ByvmsNlRP5dX2UKGgGR8BUVRSUC7sfaAdLW2gIR0ByvpVMmF8HdX2UKGgGR8BnJRIOH310aAdLcGgIR0Byvs0bcXWOdX2UKGgGR8BgX056t1ZDaAdLemgIR0Byv2N0eU6gdX2UKGgGR8Btco1DSgGsaAdLPmgIR0BywRb6guh9dX2UKGgGR0Awh8LKFIuoaAdLWGgIR0BywSlO45LidX2UKGgGR8BnhHhIe5nUaAdLdWgIR0BywcAwPAfudX2UKGgGR8ByWc6ySmqHaAdLaGgIR0BywxcX3xnWdX2UKGgGR8Bdy2FWXC0oaAdLQWgIR0Byw1oVVPvbdX2UKGgGR8BpBoyhzvJBaAdLQGgIR0ByxNPk7wKCdX2UKGgGR8BbiJVwPy08aAdLa2gIR0ByxNWuHN5ddX2UKGgGR8B34tPdl/YraAdLfGgIR0ByxO0+kgwHdX2UKGgGR8BlTqNCJGe+aAdLUmgIR0ByxR+H8CPqdX2UKGgGR8BbMfsmfGuLaAdLaGgIR0ByxY/fO2RadX2UKGgGR8BqZfvOQhfTaAdLVWgIR0ByxfK6nR9gdX2UKGgGR8BTuE6gdwNtaAdLZWgIR0Byxj+zdDYzdX2UKGgGR8Bdpd0mtyPuaAdLgmgIR0ByxqhQFcIJdX2UKGgGR8BzZmZb6guiaAdLaGgIR0ByxvgOz6acdX2UKGgGR8BgFTltCRfXaAdLTWgIR0Byxxmxt52RdX2UKGgGR8BQQOc6NlyzaAdLSGgIR0ByyBhKDkELdX2UKGgGR8B1RRYwIt17aAdLdmgIR0ByyFyzXz19dX2UKGgGR8BWZVd9lVcVaAdLU2gIR0ByyKDSPU8WdX2UKGgGR8B5prQjUutfaAdLiWgIR0ByyL3N9ph4dX2UKGgGR8Bijz/VAiV0aAdLaWgIR0ByyLTb349HdX2UKGgGR8BafYBvJiiJaAdLOWgIR0ByyODK5kLAdX2UKGgGR8BfxHOnl4keaAdLZ2gIR0ByyPKbKA8TdX2UKGgGR8BvMznNgSezaAdLUGgIR0ByyXsjVx0ddX2UKGgGR8BnZ5eNT987aAdLY2gIR0ByyoBQvYe1dX2UKGgGR8Bt6tovi97GaAdLTmgIR0Byy393r2QGdX2UKGgGR8BimRRIjGDMaAdLc2gIR0Byy6O5rgwXdX2UKGgGR8B5Gl19v0iAaAdLdmgIR0Byy58qnWJ8dX2UKGgGR8B2ImZ2IO6NaAdLV2gIR0Byy52IO6NEdX2UKGgGR8BgbwfyPMjeaAdLO2gIR0Byy/CrLhaUdX2UKGgGR8BYb/sVtXPraAdLQGgIR0Byy/sF+uvEdX2UKGgGR8BxKH3Dej20aAdLdGgIR0ByzI163RXwdX2UKGgGR8By9BrKvFFVaAdLUGgIR0ByzUMZxaPkdX2UKGgGR8Bf6xyGSIP9aAdLcGgIR0ByzWiqQzUJdX2UKGgGR8B5SH6nBLwnaAdLTmgIR0ByzWgElme2dX2UKGgGR8B6ZhbjcVQAaAdLWmgIR0Byzh8YyfthdX2UKGgGR8Bo8LbrTpgUaAdLZmgIR0ByzvHS4OMEdX2UKGgGR8Bit4WvbGm2aAdLcWgIR0Byztx1gYxddX2UKGgGR8BYHD6JqIrOaAdLPWgIR0Byz23rleWwdX2UKGgGR8B1uLI4lyBDaAdLZWgIR0Byz5fjS5RTdX2UKGgGR8BgoQzpHI6saAdLVGgIR0Byz7D4xk/bdX2UKGgGR8BF6zWPLgXNaAdLRmgIR0Byz/3ta6jGdX2UKGgGR8BZ2ptix3V1aAdLTmgIR0By0M6uGKyfdX2UKGgGR8BaYvzFuNxVaAdLR2gIR0By0QHgP3BYdX2UKGgGR8A+yVlf7aZhaAdLVGgIR0By0SOFQEZBdX2UKGgGR8BcqX9FWn0kaAdLQ2gIR0By0XACW/rTdX2UKGgGR8Bh+BLXcxj8aAdLaWgIR0By0gkX1rZbdX2UKGgGR8BXCHyAhB7eaAdLSmgIR0By0hrVOKwZdX2UKGgGR8BfDI6GQCCBaAdLbGgIR0By0l1+y7f6dX2UKGgGR8BVhnokiUxEaAdLQmgIR0By0ts/IKc/dX2UKGgGR8BT8tW6shgWaAdLPWgIR0By00x8D0UXdX2UKGgGR8Bp9rmhdt2taAdLO2gIR0By05PYWcjJdX2UKGgGR8BkHkP1+RYBaAdLRmgIR0By07CQ9zOpdX2UKGgGR8BdGhG+bmU4aAdLTmgIR0By1HLIPsiTdX2UKGgGR8BjnnhESdvsaAdLcmgIR0By1Ik7fYSQdX2UKGgGR8BwdJIy0rsjaAdLbmgIR0By1M/PgNwzdX2UKGgGRz/le18b70nPaAdLRmgIR0By1ZLTQVsUdX2UKGgGR8BhLj74zrNXaAdLcWgIR0By1fOQhfShdX2UKGgGR8BzAYb2lEZ0aAdLT2gIR0By1gj0L+gldX2UKGgGR8BYZe1OTJQtaAdLQGgIR0By1iS0Sh8IdX2UKGgGR8Bk75mwqy4XaAdLZmgIR0By10PGyX2NdX2UKGgGR8BuFAf+0gKXaAdLVmgIR0By18ZP2wmmdX2UKGgGR8By0Ps4T9KmaAdLY2gIR0By2E065oXbdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
landlunar-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:53a5b89e27e4ead0c77c0166af7487574de2a81eacd4d4fc5f442eb3a112e3f5
3
+ size 146614
landlunar-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
landlunar-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7b099e6eaf80>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b099e6eb010>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b099e6eb0a0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b099e6eb130>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7b099e6eb1c0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7b099e6eb250>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b099e6eb2e0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b099e6eb370>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7b099e6eb400>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b099e6eb490>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b099e6eb520>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b099e6eb5b0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7b099e6e7000>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 16384,
25
+ "_total_timesteps": 10000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1692026731013204464,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIXhib5sWb0/IKkUv0ewrb49eNe9XKYfvgAAAAAAAAAAzZQJPe6ZuD/XoI8+0AO/PXO3L72GhK29AAAAAAAAAACzFoo+JNkYPxIwGT+ve4K/yhbQvpivVb4AAAAAAAAAABrdIT09z7o/4aImP9ssnz5d4Ei9zUoFvgAAAAAAAAAA43fMPrX9lj8ur/M+MIAfvwY/xD6oVn8+AAAAAAAAAAC+gTe/4/+gPqzHqL8PCaS/wLozPwoCsbsAAAAAAAAAANAZEz/VwV8/KB2uP7WeSr8HA36/ImtMvgAAAAAAAAAAMzxpPQk0ID225AG+T5qWv2YKOz/fdgc/AAAAAAAAgD9Wr/k+G1sWvtVJcjzxN006ukOHPYJZBzgAAIA/AACAP22jvT5Mw0s/aIhuP5Ric79mUAq/q20AvgAAAAAAAAAAyFeOvlOlnD9MOD+/ljrYvs/2YT71Eqe9AAAAAAAAAAD9RA0/H0kyPgMgdT8nCqq/DMQcvwC1wb0AAAAAAAAAAGYUEz3idY4/K1gvPgLPUb9AUaW94uw8vQAAAAAAAAAAzSfTvWxOZD8eI7K+LuRov5vnaz7DVdY9AAAAAAAAAAANrTo+IxhOP/Ns3D67+12/SzQIvsgDrT0AAAAAAAAAAMsMeL/3vwE/upu5vyEJjr9SPVA/4M/APgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.6384000000000001,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFzWIEr5IpaMAWyUS0GMAXSUR0ByrERpUPxydX2UKGgGR8B1JWbx3FDOaAdLV2gIR0ByrOKBNEgGdX2UKGgGR8Bqm6UX531SaAdLU2gIR0ByrbIEKVpsdX2UKGgGR8BpwEl/pdKNaAdLXmgIR0ByrdPFefI0dX2UKGgGR8BoR0WM0gr6aAdLY2gIR0ByrdFI/Z/TdX2UKGgGR8BVF2smv4dqaAdLQmgIR0ByreBjFyaNdX2UKGgGR8BZs+FQEZBLaAdLTmgIR0ByrusaKk2xdX2UKGgGR8B2x/zZpSJkaAdLemgIR0ByrysJY1YRdX2UKGgGR8BT2jot+TePaAdLYmgIR0Byr0WCVbA2dX2UKGgGR8BP3biqABkqaAdLRmgIR0BysEYHgP3BdX2UKGgGR8Bns+J79hqkaAdLTGgIR0BysJX1anrIdX2UKGgGR8BSN1RxcVxkaAdLVmgIR0BysavOhTOxdX2UKGgGR8BxxvI8yN4raAdLRGgIR0BysvOjZcs2dX2UKGgGR8BZQfGQ0XP7aAdLQmgIR0Bys7OxB3RpdX2UKGgGR8By7UBdUsFuaAdLWmgIR0Bys/7hvR7adX2UKGgGR8BzaZoSL61taAdLYmgIR0Bys/nkkrwwdX2UKGgGR8BH2jfvWpZPaAdLR2gIR0BytDfrKNhmdX2UKGgGR8B7D5KK508vaAdLSWgIR0BytE/LTx5LdX2UKGgGR8BaKdxyXD3uaAdLOWgIR0BytIXenAIqdX2UKGgGR8BzQyejEehgaAdLWmgIR0BytHgLqlgudX2UKGgGR8Bti8LDye7MaAdLaWgIR0BytUekpI+XdX2UKGgGR8BfsVmapgkUaAdLWmgIR0BytfTAnDzidX2UKGgGR8Bx/LBtUGVzaAdLd2gIR0BytqXBxgiNdX2UKGgGR8B2wKBf8dgfaAdLbGgIR0ByuMYl6Z6VdX2UKGgGR8BVJRgeA/cGaAdLYGgIR0ByuRjZtelbdX2UKGgGR8BywTvjOs1baAdLXmgIR0ByuTaEi+tbdX2UKGgGR8B08+pOvdM1aAdLSGgIR0Byup/hESdwdX2UKGgGR8BxpLVTaTOgaAdLg2gIR0Byu0Djin50dX2UKGgGR8Ba/bL6k691aAdLaWgIR0Byu23rleWwdX2UKGgGR8BuQpMpPRAsaAdLWWgIR0ByvAo+fRNRdX2UKGgGR8BoqznxJ/XoaAdLXmgIR0ByvS3XqZ+hdX2UKGgGR8B6KeB7NSqEaAdLb2gIR0ByvVoXbdrPdX2UKGgGR8B7X1DkU9IPaAdLWGgIR0ByvYF1SwW4dX2UKGgGR8BwBzKLbYbsaAdLZ2gIR0ByvhzfaYeDdX2UKGgGR8BeUmapgkTpaAdLbWgIR0ByvmsNlRP5dX2UKGgGR8BUVRSUC7sfaAdLW2gIR0ByvpVMmF8HdX2UKGgGR8BnJRIOH310aAdLcGgIR0Byvs0bcXWOdX2UKGgGR8BgX056t1ZDaAdLemgIR0Byv2N0eU6gdX2UKGgGR8Btco1DSgGsaAdLPmgIR0BywRb6guh9dX2UKGgGR0Awh8LKFIuoaAdLWGgIR0BywSlO45LidX2UKGgGR8BnhHhIe5nUaAdLdWgIR0BywcAwPAfudX2UKGgGR8ByWc6ySmqHaAdLaGgIR0BywxcX3xnWdX2UKGgGR8Bdy2FWXC0oaAdLQWgIR0Byw1oVVPvbdX2UKGgGR8BpBoyhzvJBaAdLQGgIR0ByxNPk7wKCdX2UKGgGR8BbiJVwPy08aAdLa2gIR0ByxNWuHN5ddX2UKGgGR8B34tPdl/YraAdLfGgIR0ByxO0+kgwHdX2UKGgGR8BlTqNCJGe+aAdLUmgIR0ByxR+H8CPqdX2UKGgGR8BbMfsmfGuLaAdLaGgIR0ByxY/fO2RadX2UKGgGR8BqZfvOQhfTaAdLVWgIR0ByxfK6nR9gdX2UKGgGR8BTuE6gdwNtaAdLZWgIR0Byxj+zdDYzdX2UKGgGR8Bdpd0mtyPuaAdLgmgIR0ByxqhQFcIJdX2UKGgGR8BzZmZb6guiaAdLaGgIR0ByxvgOz6acdX2UKGgGR8BgFTltCRfXaAdLTWgIR0Byxxmxt52RdX2UKGgGR8BQQOc6NlyzaAdLSGgIR0ByyBhKDkELdX2UKGgGR8B1RRYwIt17aAdLdmgIR0ByyFyzXz19dX2UKGgGR8BWZVd9lVcVaAdLU2gIR0ByyKDSPU8WdX2UKGgGR8B5prQjUutfaAdLiWgIR0ByyL3N9ph4dX2UKGgGR8Bijz/VAiV0aAdLaWgIR0ByyLTb349HdX2UKGgGR8BafYBvJiiJaAdLOWgIR0ByyODK5kLAdX2UKGgGR8BfxHOnl4keaAdLZ2gIR0ByyPKbKA8TdX2UKGgGR8BvMznNgSezaAdLUGgIR0ByyXsjVx0ddX2UKGgGR8BnZ5eNT987aAdLY2gIR0ByyoBQvYe1dX2UKGgGR8Bt6tovi97GaAdLTmgIR0Byy393r2QGdX2UKGgGR8BimRRIjGDMaAdLc2gIR0Byy6O5rgwXdX2UKGgGR8B5Gl19v0iAaAdLdmgIR0Byy58qnWJ8dX2UKGgGR8B2ImZ2IO6NaAdLV2gIR0Byy52IO6NEdX2UKGgGR8BgbwfyPMjeaAdLO2gIR0Byy/CrLhaUdX2UKGgGR8BYb/sVtXPraAdLQGgIR0Byy/sF+uvEdX2UKGgGR8BxKH3Dej20aAdLdGgIR0ByzI163RXwdX2UKGgGR8By9BrKvFFVaAdLUGgIR0ByzUMZxaPkdX2UKGgGR8Bf6xyGSIP9aAdLcGgIR0ByzWiqQzUJdX2UKGgGR8B5SH6nBLwnaAdLTmgIR0ByzWgElme2dX2UKGgGR8B6ZhbjcVQAaAdLWmgIR0Byzh8YyfthdX2UKGgGR8Bo8LbrTpgUaAdLZmgIR0ByzvHS4OMEdX2UKGgGR8Bit4WvbGm2aAdLcWgIR0Byztx1gYxddX2UKGgGR8BYHD6JqIrOaAdLPWgIR0Byz23rleWwdX2UKGgGR8B1uLI4lyBDaAdLZWgIR0Byz5fjS5RTdX2UKGgGR8BgoQzpHI6saAdLVGgIR0Byz7D4xk/bdX2UKGgGR8BF6zWPLgXNaAdLRmgIR0Byz/3ta6jGdX2UKGgGR8BZ2ptix3V1aAdLTmgIR0By0M6uGKyfdX2UKGgGR8BaYvzFuNxVaAdLR2gIR0By0QHgP3BYdX2UKGgGR8A+yVlf7aZhaAdLVGgIR0By0SOFQEZBdX2UKGgGR8BcqX9FWn0kaAdLQ2gIR0By0XACW/rTdX2UKGgGR8Bh+BLXcxj8aAdLaWgIR0By0gkX1rZbdX2UKGgGR8BXCHyAhB7eaAdLSmgIR0By0hrVOKwZdX2UKGgGR8BfDI6GQCCBaAdLbGgIR0By0l1+y7f6dX2UKGgGR8BVhnokiUxEaAdLQmgIR0By0ts/IKc/dX2UKGgGR8BT8tW6shgWaAdLPWgIR0By00x8D0UXdX2UKGgGR8Bp9rmhdt2taAdLO2gIR0By05PYWcjJdX2UKGgGR8BkHkP1+RYBaAdLRmgIR0By07CQ9zOpdX2UKGgGR8BdGhG+bmU4aAdLTmgIR0By1HLIPsiTdX2UKGgGR8BjnnhESdvsaAdLcmgIR0By1Ik7fYSQdX2UKGgGR8BwdJIy0rsjaAdLbmgIR0By1M/PgNwzdX2UKGgGRz/le18b70nPaAdLRmgIR0By1ZLTQVsUdX2UKGgGR8BhLj74zrNXaAdLcWgIR0By1fOQhfShdX2UKGgGR8BzAYb2lEZ0aAdLT2gIR0By1gj0L+gldX2UKGgGR8BYZe1OTJQtaAdLQGgIR0By1iS0Sh8IdX2UKGgGR8Bk75mwqy4XaAdLZmgIR0By10PGyX2NdX2UKGgGR8BuFAf+0gKXaAdLVmgIR0By18ZP2wmmdX2UKGgGR8By0Ps4T9KmaAdLY2gIR0By2E065oXbdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 4,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
landlunar-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f921596effb779ecb8fd5a2df7f34cedf3a0eb69da8d36e7bc720e3118478be
3
+ size 87929
landlunar-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb22c150ca1b18136150395b2bb243ef6b108f09f91357cb00bfb94d04223979
3
+ size 43329
landlunar-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
landlunar-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (147 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -872.2548328999999, "std_reward": 711.9945368335476, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-14T15:28:26.283502"}