divyeshrajpura
commited on
Commit
•
63579c2
1
Parent(s):
d0b39af
Initial Commit
Browse files- README.md +37 -0
- config.json +1 -0
- landlunar-v2.zip +3 -0
- landlunar-v2/_stable_baselines3_version +1 -0
- landlunar-v2/data +99 -0
- landlunar-v2/policy.optimizer.pth +3 -0
- landlunar-v2/policy.pth +3 -0
- landlunar-v2/pytorch_variables.pth +3 -0
- landlunar-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -872.25 +/- 711.99
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b099e6eaf80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b099e6eb010>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b099e6eb0a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b099e6eb130>", "_build": "<function ActorCriticPolicy._build at 0x7b099e6eb1c0>", "forward": "<function ActorCriticPolicy.forward at 0x7b099e6eb250>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b099e6eb2e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b099e6eb370>", "_predict": "<function ActorCriticPolicy._predict at 0x7b099e6eb400>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b099e6eb490>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b099e6eb520>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b099e6eb5b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b099e6e7000>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 16384, "_total_timesteps": 10000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692026731013204464, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIXhib5sWb0/IKkUv0ewrb49eNe9XKYfvgAAAAAAAAAAzZQJPe6ZuD/XoI8+0AO/PXO3L72GhK29AAAAAAAAAACzFoo+JNkYPxIwGT+ve4K/yhbQvpivVb4AAAAAAAAAABrdIT09z7o/4aImP9ssnz5d4Ei9zUoFvgAAAAAAAAAA43fMPrX9lj8ur/M+MIAfvwY/xD6oVn8+AAAAAAAAAAC+gTe/4/+gPqzHqL8PCaS/wLozPwoCsbsAAAAAAAAAANAZEz/VwV8/KB2uP7WeSr8HA36/ImtMvgAAAAAAAAAAMzxpPQk0ID225AG+T5qWv2YKOz/fdgc/AAAAAAAAgD9Wr/k+G1sWvtVJcjzxN006ukOHPYJZBzgAAIA/AACAP22jvT5Mw0s/aIhuP5Ric79mUAq/q20AvgAAAAAAAAAAyFeOvlOlnD9MOD+/ljrYvs/2YT71Eqe9AAAAAAAAAAD9RA0/H0kyPgMgdT8nCqq/DMQcvwC1wb0AAAAAAAAAAGYUEz3idY4/K1gvPgLPUb9AUaW94uw8vQAAAAAAAAAAzSfTvWxOZD8eI7K+LuRov5vnaz7DVdY9AAAAAAAAAAANrTo+IxhOP/Ns3D67+12/SzQIvsgDrT0AAAAAAAAAAMsMeL/3vwE/upu5vyEJjr9SPVA/4M/APgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.6384000000000001, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFzWIEr5IpaMAWyUS0GMAXSUR0ByrERpUPxydX2UKGgGR8B1JWbx3FDOaAdLV2gIR0ByrOKBNEgGdX2UKGgGR8Bqm6UX531SaAdLU2gIR0ByrbIEKVpsdX2UKGgGR8BpwEl/pdKNaAdLXmgIR0ByrdPFefI0dX2UKGgGR8BoR0WM0gr6aAdLY2gIR0ByrdFI/Z/TdX2UKGgGR8BVF2smv4dqaAdLQmgIR0ByreBjFyaNdX2UKGgGR8BZs+FQEZBLaAdLTmgIR0ByrusaKk2xdX2UKGgGR8B2x/zZpSJkaAdLemgIR0ByrysJY1YRdX2UKGgGR8BT2jot+TePaAdLYmgIR0Byr0WCVbA2dX2UKGgGR8BP3biqABkqaAdLRmgIR0BysEYHgP3BdX2UKGgGR8Bns+J79hqkaAdLTGgIR0BysJX1anrIdX2UKGgGR8BSN1RxcVxkaAdLVmgIR0BysavOhTOxdX2UKGgGR8BxxvI8yN4raAdLRGgIR0BysvOjZcs2dX2UKGgGR8BZQfGQ0XP7aAdLQmgIR0Bys7OxB3RpdX2UKGgGR8By7UBdUsFuaAdLWmgIR0Bys/7hvR7adX2UKGgGR8BzaZoSL61taAdLYmgIR0Bys/nkkrwwdX2UKGgGR8BH2jfvWpZPaAdLR2gIR0BytDfrKNhmdX2UKGgGR8B7D5KK508vaAdLSWgIR0BytE/LTx5LdX2UKGgGR8BaKdxyXD3uaAdLOWgIR0BytIXenAIqdX2UKGgGR8BzQyejEehgaAdLWmgIR0BytHgLqlgudX2UKGgGR8Bti8LDye7MaAdLaWgIR0BytUekpI+XdX2UKGgGR8BfsVmapgkUaAdLWmgIR0BytfTAnDzidX2UKGgGR8Bx/LBtUGVzaAdLd2gIR0BytqXBxgiNdX2UKGgGR8B2wKBf8dgfaAdLbGgIR0ByuMYl6Z6VdX2UKGgGR8BVJRgeA/cGaAdLYGgIR0ByuRjZtelbdX2UKGgGR8BywTvjOs1baAdLXmgIR0ByuTaEi+tbdX2UKGgGR8B08+pOvdM1aAdLSGgIR0Byup/hESdwdX2UKGgGR8BxpLVTaTOgaAdLg2gIR0Byu0Djin50dX2UKGgGR8Ba/bL6k691aAdLaWgIR0Byu23rleWwdX2UKGgGR8BuQpMpPRAsaAdLWWgIR0ByvAo+fRNRdX2UKGgGR8BoqznxJ/XoaAdLXmgIR0ByvS3XqZ+hdX2UKGgGR8B6KeB7NSqEaAdLb2gIR0ByvVoXbdrPdX2UKGgGR8B7X1DkU9IPaAdLWGgIR0ByvYF1SwW4dX2UKGgGR8BwBzKLbYbsaAdLZ2gIR0ByvhzfaYeDdX2UKGgGR8BeUmapgkTpaAdLbWgIR0ByvmsNlRP5dX2UKGgGR8BUVRSUC7sfaAdLW2gIR0ByvpVMmF8HdX2UKGgGR8BnJRIOH310aAdLcGgIR0Byvs0bcXWOdX2UKGgGR8BgX056t1ZDaAdLemgIR0Byv2N0eU6gdX2UKGgGR8Btco1DSgGsaAdLPmgIR0BywRb6guh9dX2UKGgGR0Awh8LKFIuoaAdLWGgIR0BywSlO45LidX2UKGgGR8BnhHhIe5nUaAdLdWgIR0BywcAwPAfudX2UKGgGR8ByWc6ySmqHaAdLaGgIR0BywxcX3xnWdX2UKGgGR8Bdy2FWXC0oaAdLQWgIR0Byw1oVVPvbdX2UKGgGR8BpBoyhzvJBaAdLQGgIR0ByxNPk7wKCdX2UKGgGR8BbiJVwPy08aAdLa2gIR0ByxNWuHN5ddX2UKGgGR8B34tPdl/YraAdLfGgIR0ByxO0+kgwHdX2UKGgGR8BlTqNCJGe+aAdLUmgIR0ByxR+H8CPqdX2UKGgGR8BbMfsmfGuLaAdLaGgIR0ByxY/fO2RadX2UKGgGR8BqZfvOQhfTaAdLVWgIR0ByxfK6nR9gdX2UKGgGR8BTuE6gdwNtaAdLZWgIR0Byxj+zdDYzdX2UKGgGR8Bdpd0mtyPuaAdLgmgIR0ByxqhQFcIJdX2UKGgGR8BzZmZb6guiaAdLaGgIR0ByxvgOz6acdX2UKGgGR8BgFTltCRfXaAdLTWgIR0Byxxmxt52RdX2UKGgGR8BQQOc6NlyzaAdLSGgIR0ByyBhKDkELdX2UKGgGR8B1RRYwIt17aAdLdmgIR0ByyFyzXz19dX2UKGgGR8BWZVd9lVcVaAdLU2gIR0ByyKDSPU8WdX2UKGgGR8B5prQjUutfaAdLiWgIR0ByyL3N9ph4dX2UKGgGR8Bijz/VAiV0aAdLaWgIR0ByyLTb349HdX2UKGgGR8BafYBvJiiJaAdLOWgIR0ByyODK5kLAdX2UKGgGR8BfxHOnl4keaAdLZ2gIR0ByyPKbKA8TdX2UKGgGR8BvMznNgSezaAdLUGgIR0ByyXsjVx0ddX2UKGgGR8BnZ5eNT987aAdLY2gIR0ByyoBQvYe1dX2UKGgGR8Bt6tovi97GaAdLTmgIR0Byy393r2QGdX2UKGgGR8BimRRIjGDMaAdLc2gIR0Byy6O5rgwXdX2UKGgGR8B5Gl19v0iAaAdLdmgIR0Byy58qnWJ8dX2UKGgGR8B2ImZ2IO6NaAdLV2gIR0Byy52IO6NEdX2UKGgGR8BgbwfyPMjeaAdLO2gIR0Byy/CrLhaUdX2UKGgGR8BYb/sVtXPraAdLQGgIR0Byy/sF+uvEdX2UKGgGR8BxKH3Dej20aAdLdGgIR0ByzI163RXwdX2UKGgGR8By9BrKvFFVaAdLUGgIR0ByzUMZxaPkdX2UKGgGR8Bf6xyGSIP9aAdLcGgIR0ByzWiqQzUJdX2UKGgGR8B5SH6nBLwnaAdLTmgIR0ByzWgElme2dX2UKGgGR8B6ZhbjcVQAaAdLWmgIR0Byzh8YyfthdX2UKGgGR8Bo8LbrTpgUaAdLZmgIR0ByzvHS4OMEdX2UKGgGR8Bit4WvbGm2aAdLcWgIR0Byztx1gYxddX2UKGgGR8BYHD6JqIrOaAdLPWgIR0Byz23rleWwdX2UKGgGR8B1uLI4lyBDaAdLZWgIR0Byz5fjS5RTdX2UKGgGR8BgoQzpHI6saAdLVGgIR0Byz7D4xk/bdX2UKGgGR8BF6zWPLgXNaAdLRmgIR0Byz/3ta6jGdX2UKGgGR8BZ2ptix3V1aAdLTmgIR0By0M6uGKyfdX2UKGgGR8BaYvzFuNxVaAdLR2gIR0By0QHgP3BYdX2UKGgGR8A+yVlf7aZhaAdLVGgIR0By0SOFQEZBdX2UKGgGR8BcqX9FWn0kaAdLQ2gIR0By0XACW/rTdX2UKGgGR8Bh+BLXcxj8aAdLaWgIR0By0gkX1rZbdX2UKGgGR8BXCHyAhB7eaAdLSmgIR0By0hrVOKwZdX2UKGgGR8BfDI6GQCCBaAdLbGgIR0By0l1+y7f6dX2UKGgGR8BVhnokiUxEaAdLQmgIR0By0ts/IKc/dX2UKGgGR8BT8tW6shgWaAdLPWgIR0By00x8D0UXdX2UKGgGR8Bp9rmhdt2taAdLO2gIR0By05PYWcjJdX2UKGgGR8BkHkP1+RYBaAdLRmgIR0By07CQ9zOpdX2UKGgGR8BdGhG+bmU4aAdLTmgIR0By1HLIPsiTdX2UKGgGR8BjnnhESdvsaAdLcmgIR0By1Ik7fYSQdX2UKGgGR8BwdJIy0rsjaAdLbmgIR0By1M/PgNwzdX2UKGgGRz/le18b70nPaAdLRmgIR0By1ZLTQVsUdX2UKGgGR8BhLj74zrNXaAdLcWgIR0By1fOQhfShdX2UKGgGR8BzAYb2lEZ0aAdLT2gIR0By1gj0L+gldX2UKGgGR8BYZe1OTJQtaAdLQGgIR0By1iS0Sh8IdX2UKGgGR8Bk75mwqy4XaAdLZmgIR0By10PGyX2NdX2UKGgGR8BuFAf+0gKXaAdLVmgIR0By18ZP2wmmdX2UKGgGR8By0Ps4T9KmaAdLY2gIR0By2E065oXbdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
landlunar-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:53a5b89e27e4ead0c77c0166af7487574de2a81eacd4d4fc5f442eb3a112e3f5
|
3 |
+
size 146614
|
landlunar-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
landlunar-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7b099e6eaf80>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b099e6eb010>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b099e6eb0a0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b099e6eb130>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7b099e6eb1c0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7b099e6eb250>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7b099e6eb2e0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b099e6eb370>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7b099e6eb400>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b099e6eb490>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b099e6eb520>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7b099e6eb5b0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7b099e6e7000>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 16384,
|
25 |
+
"_total_timesteps": 10000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1692026731013204464,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIXhib5sWb0/IKkUv0ewrb49eNe9XKYfvgAAAAAAAAAAzZQJPe6ZuD/XoI8+0AO/PXO3L72GhK29AAAAAAAAAACzFoo+JNkYPxIwGT+ve4K/yhbQvpivVb4AAAAAAAAAABrdIT09z7o/4aImP9ssnz5d4Ei9zUoFvgAAAAAAAAAA43fMPrX9lj8ur/M+MIAfvwY/xD6oVn8+AAAAAAAAAAC+gTe/4/+gPqzHqL8PCaS/wLozPwoCsbsAAAAAAAAAANAZEz/VwV8/KB2uP7WeSr8HA36/ImtMvgAAAAAAAAAAMzxpPQk0ID225AG+T5qWv2YKOz/fdgc/AAAAAAAAgD9Wr/k+G1sWvtVJcjzxN006ukOHPYJZBzgAAIA/AACAP22jvT5Mw0s/aIhuP5Ric79mUAq/q20AvgAAAAAAAAAAyFeOvlOlnD9MOD+/ljrYvs/2YT71Eqe9AAAAAAAAAAD9RA0/H0kyPgMgdT8nCqq/DMQcvwC1wb0AAAAAAAAAAGYUEz3idY4/K1gvPgLPUb9AUaW94uw8vQAAAAAAAAAAzSfTvWxOZD8eI7K+LuRov5vnaz7DVdY9AAAAAAAAAAANrTo+IxhOP/Ns3D67+12/SzQIvsgDrT0AAAAAAAAAAMsMeL/3vwE/upu5vyEJjr9SPVA/4M/APgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.6384000000000001,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFzWIEr5IpaMAWyUS0GMAXSUR0ByrERpUPxydX2UKGgGR8B1JWbx3FDOaAdLV2gIR0ByrOKBNEgGdX2UKGgGR8Bqm6UX531SaAdLU2gIR0ByrbIEKVpsdX2UKGgGR8BpwEl/pdKNaAdLXmgIR0ByrdPFefI0dX2UKGgGR8BoR0WM0gr6aAdLY2gIR0ByrdFI/Z/TdX2UKGgGR8BVF2smv4dqaAdLQmgIR0ByreBjFyaNdX2UKGgGR8BZs+FQEZBLaAdLTmgIR0ByrusaKk2xdX2UKGgGR8B2x/zZpSJkaAdLemgIR0ByrysJY1YRdX2UKGgGR8BT2jot+TePaAdLYmgIR0Byr0WCVbA2dX2UKGgGR8BP3biqABkqaAdLRmgIR0BysEYHgP3BdX2UKGgGR8Bns+J79hqkaAdLTGgIR0BysJX1anrIdX2UKGgGR8BSN1RxcVxkaAdLVmgIR0BysavOhTOxdX2UKGgGR8BxxvI8yN4raAdLRGgIR0BysvOjZcs2dX2UKGgGR8BZQfGQ0XP7aAdLQmgIR0Bys7OxB3RpdX2UKGgGR8By7UBdUsFuaAdLWmgIR0Bys/7hvR7adX2UKGgGR8BzaZoSL61taAdLYmgIR0Bys/nkkrwwdX2UKGgGR8BH2jfvWpZPaAdLR2gIR0BytDfrKNhmdX2UKGgGR8B7D5KK508vaAdLSWgIR0BytE/LTx5LdX2UKGgGR8BaKdxyXD3uaAdLOWgIR0BytIXenAIqdX2UKGgGR8BzQyejEehgaAdLWmgIR0BytHgLqlgudX2UKGgGR8Bti8LDye7MaAdLaWgIR0BytUekpI+XdX2UKGgGR8BfsVmapgkUaAdLWmgIR0BytfTAnDzidX2UKGgGR8Bx/LBtUGVzaAdLd2gIR0BytqXBxgiNdX2UKGgGR8B2wKBf8dgfaAdLbGgIR0ByuMYl6Z6VdX2UKGgGR8BVJRgeA/cGaAdLYGgIR0ByuRjZtelbdX2UKGgGR8BywTvjOs1baAdLXmgIR0ByuTaEi+tbdX2UKGgGR8B08+pOvdM1aAdLSGgIR0Byup/hESdwdX2UKGgGR8BxpLVTaTOgaAdLg2gIR0Byu0Djin50dX2UKGgGR8Ba/bL6k691aAdLaWgIR0Byu23rleWwdX2UKGgGR8BuQpMpPRAsaAdLWWgIR0ByvAo+fRNRdX2UKGgGR8BoqznxJ/XoaAdLXmgIR0ByvS3XqZ+hdX2UKGgGR8B6KeB7NSqEaAdLb2gIR0ByvVoXbdrPdX2UKGgGR8B7X1DkU9IPaAdLWGgIR0ByvYF1SwW4dX2UKGgGR8BwBzKLbYbsaAdLZ2gIR0ByvhzfaYeDdX2UKGgGR8BeUmapgkTpaAdLbWgIR0ByvmsNlRP5dX2UKGgGR8BUVRSUC7sfaAdLW2gIR0ByvpVMmF8HdX2UKGgGR8BnJRIOH310aAdLcGgIR0Byvs0bcXWOdX2UKGgGR8BgX056t1ZDaAdLemgIR0Byv2N0eU6gdX2UKGgGR8Btco1DSgGsaAdLPmgIR0BywRb6guh9dX2UKGgGR0Awh8LKFIuoaAdLWGgIR0BywSlO45LidX2UKGgGR8BnhHhIe5nUaAdLdWgIR0BywcAwPAfudX2UKGgGR8ByWc6ySmqHaAdLaGgIR0BywxcX3xnWdX2UKGgGR8Bdy2FWXC0oaAdLQWgIR0Byw1oVVPvbdX2UKGgGR8BpBoyhzvJBaAdLQGgIR0ByxNPk7wKCdX2UKGgGR8BbiJVwPy08aAdLa2gIR0ByxNWuHN5ddX2UKGgGR8B34tPdl/YraAdLfGgIR0ByxO0+kgwHdX2UKGgGR8BlTqNCJGe+aAdLUmgIR0ByxR+H8CPqdX2UKGgGR8BbMfsmfGuLaAdLaGgIR0ByxY/fO2RadX2UKGgGR8BqZfvOQhfTaAdLVWgIR0ByxfK6nR9gdX2UKGgGR8BTuE6gdwNtaAdLZWgIR0Byxj+zdDYzdX2UKGgGR8Bdpd0mtyPuaAdLgmgIR0ByxqhQFcIJdX2UKGgGR8BzZmZb6guiaAdLaGgIR0ByxvgOz6acdX2UKGgGR8BgFTltCRfXaAdLTWgIR0Byxxmxt52RdX2UKGgGR8BQQOc6NlyzaAdLSGgIR0ByyBhKDkELdX2UKGgGR8B1RRYwIt17aAdLdmgIR0ByyFyzXz19dX2UKGgGR8BWZVd9lVcVaAdLU2gIR0ByyKDSPU8WdX2UKGgGR8B5prQjUutfaAdLiWgIR0ByyL3N9ph4dX2UKGgGR8Bijz/VAiV0aAdLaWgIR0ByyLTb349HdX2UKGgGR8BafYBvJiiJaAdLOWgIR0ByyODK5kLAdX2UKGgGR8BfxHOnl4keaAdLZ2gIR0ByyPKbKA8TdX2UKGgGR8BvMznNgSezaAdLUGgIR0ByyXsjVx0ddX2UKGgGR8BnZ5eNT987aAdLY2gIR0ByyoBQvYe1dX2UKGgGR8Bt6tovi97GaAdLTmgIR0Byy393r2QGdX2UKGgGR8BimRRIjGDMaAdLc2gIR0Byy6O5rgwXdX2UKGgGR8B5Gl19v0iAaAdLdmgIR0Byy58qnWJ8dX2UKGgGR8B2ImZ2IO6NaAdLV2gIR0Byy52IO6NEdX2UKGgGR8BgbwfyPMjeaAdLO2gIR0Byy/CrLhaUdX2UKGgGR8BYb/sVtXPraAdLQGgIR0Byy/sF+uvEdX2UKGgGR8BxKH3Dej20aAdLdGgIR0ByzI163RXwdX2UKGgGR8By9BrKvFFVaAdLUGgIR0ByzUMZxaPkdX2UKGgGR8Bf6xyGSIP9aAdLcGgIR0ByzWiqQzUJdX2UKGgGR8B5SH6nBLwnaAdLTmgIR0ByzWgElme2dX2UKGgGR8B6ZhbjcVQAaAdLWmgIR0Byzh8YyfthdX2UKGgGR8Bo8LbrTpgUaAdLZmgIR0ByzvHS4OMEdX2UKGgGR8Bit4WvbGm2aAdLcWgIR0Byztx1gYxddX2UKGgGR8BYHD6JqIrOaAdLPWgIR0Byz23rleWwdX2UKGgGR8B1uLI4lyBDaAdLZWgIR0Byz5fjS5RTdX2UKGgGR8BgoQzpHI6saAdLVGgIR0Byz7D4xk/bdX2UKGgGR8BF6zWPLgXNaAdLRmgIR0Byz/3ta6jGdX2UKGgGR8BZ2ptix3V1aAdLTmgIR0By0M6uGKyfdX2UKGgGR8BaYvzFuNxVaAdLR2gIR0By0QHgP3BYdX2UKGgGR8A+yVlf7aZhaAdLVGgIR0By0SOFQEZBdX2UKGgGR8BcqX9FWn0kaAdLQ2gIR0By0XACW/rTdX2UKGgGR8Bh+BLXcxj8aAdLaWgIR0By0gkX1rZbdX2UKGgGR8BXCHyAhB7eaAdLSmgIR0By0hrVOKwZdX2UKGgGR8BfDI6GQCCBaAdLbGgIR0By0l1+y7f6dX2UKGgGR8BVhnokiUxEaAdLQmgIR0By0ts/IKc/dX2UKGgGR8BT8tW6shgWaAdLPWgIR0By00x8D0UXdX2UKGgGR8Bp9rmhdt2taAdLO2gIR0By05PYWcjJdX2UKGgGR8BkHkP1+RYBaAdLRmgIR0By07CQ9zOpdX2UKGgGR8BdGhG+bmU4aAdLTmgIR0By1HLIPsiTdX2UKGgGR8BjnnhESdvsaAdLcmgIR0By1Ik7fYSQdX2UKGgGR8BwdJIy0rsjaAdLbmgIR0By1M/PgNwzdX2UKGgGRz/le18b70nPaAdLRmgIR0By1ZLTQVsUdX2UKGgGR8BhLj74zrNXaAdLcWgIR0By1fOQhfShdX2UKGgGR8BzAYb2lEZ0aAdLT2gIR0By1gj0L+gldX2UKGgGR8BYZe1OTJQtaAdLQGgIR0By1iS0Sh8IdX2UKGgGR8Bk75mwqy4XaAdLZmgIR0By10PGyX2NdX2UKGgGR8BuFAf+0gKXaAdLVmgIR0By18ZP2wmmdX2UKGgGR8By0Ps4T9KmaAdLY2gIR0By2E065oXbdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 4,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
landlunar-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f921596effb779ecb8fd5a2df7f34cedf3a0eb69da8d36e7bc720e3118478be
|
3 |
+
size 87929
|
landlunar-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eb22c150ca1b18136150395b2bb243ef6b108f09f91357cb00bfb94d04223979
|
3 |
+
size 43329
|
landlunar-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
landlunar-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (147 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -872.2548328999999, "std_reward": 711.9945368335476, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-14T15:28:26.283502"}
|