Initial checkin
Browse files- config.json +110 -0
- merges.txt +0 -0
- pytorch_model.bin +3 -0
- rng_state.pth +3 -0
- run.log +512 -0
- scaler.pt +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +67 -0
- trainer_state.json +232 -0
- training_args.bin +3 -0
- vocab.json +0 -0
config.json
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "microsoft/deberta-base",
|
3 |
+
"architectures": [
|
4 |
+
"DebertaForTokenClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"hidden_act": "gelu",
|
8 |
+
"hidden_dropout_prob": 0.1,
|
9 |
+
"hidden_size": 768,
|
10 |
+
"id2label": {
|
11 |
+
"0": "O",
|
12 |
+
"1": "B-PERSON",
|
13 |
+
"2": "I-PERSON",
|
14 |
+
"3": "B-NORP",
|
15 |
+
"4": "I-NORP",
|
16 |
+
"5": "B-FAC",
|
17 |
+
"6": "I-FAC",
|
18 |
+
"7": "B-ORG",
|
19 |
+
"8": "I-ORG",
|
20 |
+
"9": "B-GPE",
|
21 |
+
"10": "I-GPE",
|
22 |
+
"11": "B-LOC",
|
23 |
+
"12": "I-LOC",
|
24 |
+
"13": "B-PRODUCT",
|
25 |
+
"14": "I-PRODUCT",
|
26 |
+
"15": "B-DATE",
|
27 |
+
"16": "I-DATE",
|
28 |
+
"17": "B-TIME",
|
29 |
+
"18": "I-TIME",
|
30 |
+
"19": "B-PERCENT",
|
31 |
+
"20": "I-PERCENT",
|
32 |
+
"21": "B-MONEY",
|
33 |
+
"22": "I-MONEY",
|
34 |
+
"23": "B-QUANTITY",
|
35 |
+
"24": "I-QUANTITY",
|
36 |
+
"25": "B-ORDINAL",
|
37 |
+
"26": "I-ORDINAL",
|
38 |
+
"27": "B-CARDINAL",
|
39 |
+
"28": "I-CARDINAL",
|
40 |
+
"29": "B-EVENT",
|
41 |
+
"30": "I-EVENT",
|
42 |
+
"31": "B-WORK_OF_ART",
|
43 |
+
"32": "I-WORK_OF_ART",
|
44 |
+
"33": "B-LAW",
|
45 |
+
"34": "I-LAW",
|
46 |
+
"35": "B-LANGUAGE",
|
47 |
+
"36": "I-LANGUAGE"
|
48 |
+
},
|
49 |
+
"initializer_range": 0.02,
|
50 |
+
"intermediate_size": 3072,
|
51 |
+
"label2id": {
|
52 |
+
"B-CARDINAL": 27,
|
53 |
+
"B-DATE": 15,
|
54 |
+
"B-EVENT": 29,
|
55 |
+
"B-FAC": 5,
|
56 |
+
"B-GPE": 9,
|
57 |
+
"B-LANGUAGE": 35,
|
58 |
+
"B-LAW": 33,
|
59 |
+
"B-LOC": 11,
|
60 |
+
"B-MONEY": 21,
|
61 |
+
"B-NORP": 3,
|
62 |
+
"B-ORDINAL": 25,
|
63 |
+
"B-ORG": 7,
|
64 |
+
"B-PERCENT": 19,
|
65 |
+
"B-PERSON": 1,
|
66 |
+
"B-PRODUCT": 13,
|
67 |
+
"B-QUANTITY": 23,
|
68 |
+
"B-TIME": 17,
|
69 |
+
"B-WORK_OF_ART": 31,
|
70 |
+
"I-CARDINAL": 28,
|
71 |
+
"I-DATE": 16,
|
72 |
+
"I-EVENT": 30,
|
73 |
+
"I-FAC": 6,
|
74 |
+
"I-GPE": 10,
|
75 |
+
"I-LANGUAGE": 36,
|
76 |
+
"I-LAW": 34,
|
77 |
+
"I-LOC": 12,
|
78 |
+
"I-MONEY": 22,
|
79 |
+
"I-NORP": 4,
|
80 |
+
"I-ORDINAL": 26,
|
81 |
+
"I-ORG": 8,
|
82 |
+
"I-PERCENT": 20,
|
83 |
+
"I-PERSON": 2,
|
84 |
+
"I-PRODUCT": 14,
|
85 |
+
"I-QUANTITY": 24,
|
86 |
+
"I-TIME": 18,
|
87 |
+
"I-WORK_OF_ART": 32,
|
88 |
+
"O": 0
|
89 |
+
},
|
90 |
+
"layer_norm_eps": 1e-07,
|
91 |
+
"max_position_embeddings": 512,
|
92 |
+
"max_relative_positions": -1,
|
93 |
+
"model_type": "deberta",
|
94 |
+
"num_attention_heads": 12,
|
95 |
+
"num_hidden_layers": 12,
|
96 |
+
"pad_token_id": 0,
|
97 |
+
"pooler_dropout": 0,
|
98 |
+
"pooler_hidden_act": "gelu",
|
99 |
+
"pooler_hidden_size": 768,
|
100 |
+
"pos_att_type": [
|
101 |
+
"c2p",
|
102 |
+
"p2c"
|
103 |
+
],
|
104 |
+
"position_biased_input": false,
|
105 |
+
"relative_attention": true,
|
106 |
+
"torch_dtype": "float32",
|
107 |
+
"transformers_version": "4.23.0",
|
108 |
+
"type_vocab_size": 0,
|
109 |
+
"vocab_size": 50265
|
110 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ab235be6d875536f6ea6ae372fba48ce781e67a30607363bd1501128f17dbb8
|
3 |
+
size 554591539
|
rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6de13a5bb5071790a9af50795884d2fba4140bf5f6c5b1bcb0dc7e0b2c0347f4
|
3 |
+
size 14503
|
run.log
ADDED
@@ -0,0 +1,512 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2022-11-16 17:06:48,577 - __main__ - INFO - Label List:['O', 'B-PERSON', 'I-PERSON', 'B-NORP', 'I-NORP', 'B-FAC', 'I-FAC', 'B-ORG', 'I-ORG', 'B-GPE', 'I-GPE', 'B-LOC', 'I-LOC', 'B-PRODUCT', 'I-PRODUCT', 'B-DATE', 'I-DATE', 'B-TIME', 'I-TIME', 'B-PERCENT', 'I-PERCENT', 'B-MONEY', 'I-MONEY', 'B-QUANTITY', 'I-QUANTITY', 'B-ORDINAL', 'I-ORDINAL', 'B-CARDINAL', 'I-CARDINAL', 'B-EVENT', 'I-EVENT', 'B-WORK_OF_ART', 'I-WORK_OF_ART', 'B-LAW', 'I-LAW', 'B-LANGUAGE', 'I-LANGUAGE']
|
2 |
+
2022-11-16 17:06:55,367 - __main__ - INFO - Dataset({
|
3 |
+
features: ['id', 'words', 'ner_tags'],
|
4 |
+
num_rows: 75187
|
5 |
+
})
|
6 |
+
2022-11-16 17:06:56,175 - __main__ - INFO - Dataset({
|
7 |
+
features: ['id', 'words', 'ner_tags'],
|
8 |
+
num_rows: 9479
|
9 |
+
})
|
10 |
+
2022-11-16 17:06:56,185 - transformers.tokenization_utils_base - INFO - loading file vocab.json
|
11 |
+
2022-11-16 17:06:56,185 - transformers.tokenization_utils_base - INFO - loading file merges.txt
|
12 |
+
2022-11-16 17:06:56,185 - transformers.tokenization_utils_base - INFO - loading file tokenizer.json
|
13 |
+
2022-11-16 17:06:56,185 - transformers.tokenization_utils_base - INFO - loading file added_tokens.json
|
14 |
+
2022-11-16 17:06:56,185 - transformers.tokenization_utils_base - INFO - loading file special_tokens_map.json
|
15 |
+
2022-11-16 17:06:56,185 - transformers.tokenization_utils_base - INFO - loading file tokenizer_config.json
|
16 |
+
2022-11-16 17:06:56,250 - __main__ - INFO - {'input_ids': [[1, 653, 761, 9, 3783, 17487, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 166, 32928, 9603, 47, 7, 1183, 10, 780, 5403, 9, 15581, 436, 479, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 15584, 3082, 3192, 23959, 15, 5, 2860, 3875, 9, 436, 4832, 41876, 38628, 9, 15643, 24610, 4743, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 15125, 6764, 15, 15643, 24610, 4743, 16, 5, 23001, 7, 5, 41184, 6304, 25132, 23909, 479, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 85, 16, 14092, 9, 10, 2270, 11235, 459, 2156, 5929, 1690, 523, 293, 2156, 10, 1307, 1062, 18185, 8, 30943, 9368, 2156, 8, 5, 2860, 2298, 2156, 566, 97, 383, 479, 2]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]}
|
17 |
+
2022-11-16 17:06:56,251 - __main__ - INFO - ['[CLS]', 'ĠWhat', 'Ġkind', 'Ġof', 'Ġmemory', 'Ġ?', '[SEP]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]']
|
18 |
+
2022-11-16 17:06:56,251 - __main__ - INFO - ['[CLS]', 'ĠWe', 'Ġrespectfully', 'Ġinvite', 'Ġyou', 'Ġto', 'Ġwatch', 'Ġa', 'Ġspecial', 'Ġedition', 'Ġof', 'ĠAcross', 'ĠChina', 'Ġ.', '[SEP]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]']
|
19 |
+
2022-11-16 17:06:56,251 - __main__ - INFO - ['[CLS]', 'ĠWW', 'ĠII', 'ĠLand', 'marks', 'Ġon', 'Ġthe', 'ĠGreat', 'ĠEarth', 'Ġof', 'ĠChina', 'Ġ:', 'ĠEternal', 'ĠMemories', 'Ġof', 'ĠTai', 'hang', 'ĠMountain', '[SEP]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]']
|
20 |
+
2022-11-16 17:06:56,251 - __main__ - INFO - ['[CLS]', 'ĠStanding', 'Ġtall', 'Ġon', 'ĠTai', 'hang', 'ĠMountain', 'Ġis', 'Ġthe', 'ĠMonument', 'Ġto', 'Ġthe', 'ĠHundred', 'ĠReg', 'iments', 'ĠOffensive', 'Ġ.', '[SEP]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]']
|
21 |
+
2022-11-16 17:06:56,252 - __main__ - INFO - ['[CLS]', 'ĠIt', 'Ġis', 'Ġcomposed', 'Ġof', 'Ġa', 'Ġprimary', 'Ġste', 'le', 'Ġ,', 'Ġsecondary', 'Ġst', 'el', 'es', 'Ġ,', 'Ġa', 'Ġhuge', 'Ġround', 'Ġsculpture', 'Ġand', 'Ġbeacon', 'Ġtower', 'Ġ,', 'Ġand', 'Ġthe', 'ĠGreat', 'ĠWall', 'Ġ,', 'Ġamong', 'Ġother', 'Ġthings', 'Ġ.', '[SEP]']
|
22 |
+
2022-11-16 17:06:56,252 - __main__ - INFO - -------------
|
23 |
+
2022-11-16 17:06:56,252 - __main__ - INFO - ['[CLS]', 'ĠWe', 'Ġrespectfully', 'Ġinvite', 'Ġyou', 'Ġto', 'Ġwatch', 'Ġa', 'Ġspecial', 'Ġedition', 'Ġof', 'ĠAcross', 'ĠChina', 'Ġ.', '[SEP]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]']
|
24 |
+
2022-11-16 17:06:56,252 - __main__ - INFO - [None, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None]
|
25 |
+
2022-11-16 17:07:05,682 - __main__ - INFO - {'id': [0, 1, 2, 3, 4], 'words': [['What', 'kind', 'of', 'memory', '?'], ['We', 'respectfully', 'invite', 'you', 'to', 'watch', 'a', 'special', 'edition', 'of', 'Across', 'China', '.'], ['WW', 'II', 'Landmarks', 'on', 'the', 'Great', 'Earth', 'of', 'China', ':', 'Eternal', 'Memories', 'of', 'Taihang', 'Mountain'], ['Standing', 'tall', 'on', 'Taihang', 'Mountain', 'is', 'the', 'Monument', 'to', 'the', 'Hundred', 'Regiments', 'Offensive', '.'], ['It', 'is', 'composed', 'of', 'a', 'primary', 'stele', ',', 'secondary', 'steles', ',', 'a', 'huge', 'round', 'sculpture', 'and', 'beacon', 'tower', ',', 'and', 'the', 'Great', 'Wall', ',', 'among', 'other', 'things', '.']], 'ner_tags': [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 0], [31, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32], [0, 0, 0, 11, 12, 0, 31, 32, 32, 32, 32, 32, 32, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 31, 32, 32, 0, 0, 0, 0, 0]], 'input_ids': [[1, 653, 761, 9, 3783, 17487, 2], [1, 166, 32928, 9603, 47, 7, 1183, 10, 780, 5403, 9, 15581, 436, 479, 2], [1, 15584, 3082, 3192, 23959, 15, 5, 2860, 3875, 9, 436, 4832, 41876, 38628, 9, 15643, 24610, 4743, 2], [1, 15125, 6764, 15, 15643, 24610, 4743, 16, 5, 23001, 7, 5, 41184, 6304, 25132, 23909, 479, 2], [1, 85, 16, 14092, 9, 10, 2270, 11235, 459, 2156, 5929, 1690, 523, 293, 2156, 10, 1307, 1062, 18185, 8, 30943, 9368, 2156, 8, 5, 2860, 2298, 2156, 566, 97, 383, 479, 2]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'labels': [[-100, 0, 0, 0, 0, 0, -100], [-100, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 0, -100], [-100, 31, 32, 32, -100, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, -100, 32, -100], [-100, 0, 0, 0, 11, -100, 12, 0, 31, 32, 32, 32, 32, 32, -100, 32, 0, -100], [-100, 0, 0, 0, 0, 0, 0, 0, -100, 0, 0, 0, -100, -100, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 31, 32, 32, 0, 0, 0, 0, 0, -100]]}
|
26 |
+
2022-11-16 17:07:06,902 - transformers.configuration_utils - INFO - loading configuration file /content/NER-System/models/microsoft/deberta-base_1668615764.565312/checkpoint-14100/config.json
|
27 |
+
2022-11-16 17:07:06,904 - transformers.configuration_utils - INFO - Model config DebertaConfig {
|
28 |
+
"_name_or_path": "/content/NER-System/models/microsoft/deberta-base_1668615764.565312/checkpoint-14100",
|
29 |
+
"architectures": [
|
30 |
+
"DebertaForTokenClassification"
|
31 |
+
],
|
32 |
+
"attention_probs_dropout_prob": 0.1,
|
33 |
+
"hidden_act": "gelu",
|
34 |
+
"hidden_dropout_prob": 0.1,
|
35 |
+
"hidden_size": 768,
|
36 |
+
"id2label": {
|
37 |
+
"0": "O",
|
38 |
+
"1": "B-PERSON",
|
39 |
+
"2": "I-PERSON",
|
40 |
+
"3": "B-NORP",
|
41 |
+
"4": "I-NORP",
|
42 |
+
"5": "B-FAC",
|
43 |
+
"6": "I-FAC",
|
44 |
+
"7": "B-ORG",
|
45 |
+
"8": "I-ORG",
|
46 |
+
"9": "B-GPE",
|
47 |
+
"10": "I-GPE",
|
48 |
+
"11": "B-LOC",
|
49 |
+
"12": "I-LOC",
|
50 |
+
"13": "B-PRODUCT",
|
51 |
+
"14": "I-PRODUCT",
|
52 |
+
"15": "B-DATE",
|
53 |
+
"16": "I-DATE",
|
54 |
+
"17": "B-TIME",
|
55 |
+
"18": "I-TIME",
|
56 |
+
"19": "B-PERCENT",
|
57 |
+
"20": "I-PERCENT",
|
58 |
+
"21": "B-MONEY",
|
59 |
+
"22": "I-MONEY",
|
60 |
+
"23": "B-QUANTITY",
|
61 |
+
"24": "I-QUANTITY",
|
62 |
+
"25": "B-ORDINAL",
|
63 |
+
"26": "I-ORDINAL",
|
64 |
+
"27": "B-CARDINAL",
|
65 |
+
"28": "I-CARDINAL",
|
66 |
+
"29": "B-EVENT",
|
67 |
+
"30": "I-EVENT",
|
68 |
+
"31": "B-WORK_OF_ART",
|
69 |
+
"32": "I-WORK_OF_ART",
|
70 |
+
"33": "B-LAW",
|
71 |
+
"34": "I-LAW",
|
72 |
+
"35": "B-LANGUAGE",
|
73 |
+
"36": "I-LANGUAGE"
|
74 |
+
},
|
75 |
+
"initializer_range": 0.02,
|
76 |
+
"intermediate_size": 3072,
|
77 |
+
"label2id": {
|
78 |
+
"B-CARDINAL": 27,
|
79 |
+
"B-DATE": 15,
|
80 |
+
"B-EVENT": 29,
|
81 |
+
"B-FAC": 5,
|
82 |
+
"B-GPE": 9,
|
83 |
+
"B-LANGUAGE": 35,
|
84 |
+
"B-LAW": 33,
|
85 |
+
"B-LOC": 11,
|
86 |
+
"B-MONEY": 21,
|
87 |
+
"B-NORP": 3,
|
88 |
+
"B-ORDINAL": 25,
|
89 |
+
"B-ORG": 7,
|
90 |
+
"B-PERCENT": 19,
|
91 |
+
"B-PERSON": 1,
|
92 |
+
"B-PRODUCT": 13,
|
93 |
+
"B-QUANTITY": 23,
|
94 |
+
"B-TIME": 17,
|
95 |
+
"B-WORK_OF_ART": 31,
|
96 |
+
"I-CARDINAL": 28,
|
97 |
+
"I-DATE": 16,
|
98 |
+
"I-EVENT": 30,
|
99 |
+
"I-FAC": 6,
|
100 |
+
"I-GPE": 10,
|
101 |
+
"I-LANGUAGE": 36,
|
102 |
+
"I-LAW": 34,
|
103 |
+
"I-LOC": 12,
|
104 |
+
"I-MONEY": 22,
|
105 |
+
"I-NORP": 4,
|
106 |
+
"I-ORDINAL": 26,
|
107 |
+
"I-ORG": 8,
|
108 |
+
"I-PERCENT": 20,
|
109 |
+
"I-PERSON": 2,
|
110 |
+
"I-PRODUCT": 14,
|
111 |
+
"I-QUANTITY": 24,
|
112 |
+
"I-TIME": 18,
|
113 |
+
"I-WORK_OF_ART": 32,
|
114 |
+
"O": 0
|
115 |
+
},
|
116 |
+
"layer_norm_eps": 1e-07,
|
117 |
+
"max_position_embeddings": 512,
|
118 |
+
"max_relative_positions": -1,
|
119 |
+
"model_type": "deberta",
|
120 |
+
"num_attention_heads": 12,
|
121 |
+
"num_hidden_layers": 12,
|
122 |
+
"pad_token_id": 0,
|
123 |
+
"pooler_dropout": 0,
|
124 |
+
"pooler_hidden_act": "gelu",
|
125 |
+
"pooler_hidden_size": 768,
|
126 |
+
"pos_att_type": [
|
127 |
+
"c2p",
|
128 |
+
"p2c"
|
129 |
+
],
|
130 |
+
"position_biased_input": false,
|
131 |
+
"relative_attention": true,
|
132 |
+
"torch_dtype": "float32",
|
133 |
+
"transformers_version": "4.23.0",
|
134 |
+
"type_vocab_size": 0,
|
135 |
+
"vocab_size": 50265
|
136 |
+
}
|
137 |
+
|
138 |
+
2022-11-16 17:07:06,933 - transformers.modeling_utils - INFO - loading weights file /content/NER-System/models/microsoft/deberta-base_1668615764.565312/checkpoint-14100/pytorch_model.bin
|
139 |
+
2022-11-16 17:07:08,422 - transformers.modeling_utils - INFO - All model checkpoint weights were used when initializing DebertaForTokenClassification.
|
140 |
+
|
141 |
+
2022-11-16 17:07:08,422 - transformers.modeling_utils - INFO - All the weights of DebertaForTokenClassification were initialized from the model checkpoint at /content/NER-System/models/microsoft/deberta-base_1668615764.565312/checkpoint-14100.
|
142 |
+
If your task is similar to the task the model of the checkpoint was trained on, you can already use DebertaForTokenClassification for predictions without further training.
|
143 |
+
2022-11-16 17:07:08,500 - __main__ - INFO - DebertaForTokenClassification(
|
144 |
+
(deberta): DebertaModel(
|
145 |
+
(embeddings): DebertaEmbeddings(
|
146 |
+
(word_embeddings): Embedding(50265, 768, padding_idx=0)
|
147 |
+
(LayerNorm): DebertaLayerNorm()
|
148 |
+
(dropout): StableDropout()
|
149 |
+
)
|
150 |
+
(encoder): DebertaEncoder(
|
151 |
+
(layer): ModuleList(
|
152 |
+
(0): DebertaLayer(
|
153 |
+
(attention): DebertaAttention(
|
154 |
+
(self): DisentangledSelfAttention(
|
155 |
+
(in_proj): Linear(in_features=768, out_features=2304, bias=False)
|
156 |
+
(pos_dropout): StableDropout()
|
157 |
+
(pos_proj): Linear(in_features=768, out_features=768, bias=False)
|
158 |
+
(pos_q_proj): Linear(in_features=768, out_features=768, bias=True)
|
159 |
+
(dropout): StableDropout()
|
160 |
+
)
|
161 |
+
(output): DebertaSelfOutput(
|
162 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
163 |
+
(LayerNorm): DebertaLayerNorm()
|
164 |
+
(dropout): StableDropout()
|
165 |
+
)
|
166 |
+
)
|
167 |
+
(intermediate): DebertaIntermediate(
|
168 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
169 |
+
(intermediate_act_fn): GELUActivation()
|
170 |
+
)
|
171 |
+
(output): DebertaOutput(
|
172 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
173 |
+
(LayerNorm): DebertaLayerNorm()
|
174 |
+
(dropout): StableDropout()
|
175 |
+
)
|
176 |
+
)
|
177 |
+
(1): DebertaLayer(
|
178 |
+
(attention): DebertaAttention(
|
179 |
+
(self): DisentangledSelfAttention(
|
180 |
+
(in_proj): Linear(in_features=768, out_features=2304, bias=False)
|
181 |
+
(pos_dropout): StableDropout()
|
182 |
+
(pos_proj): Linear(in_features=768, out_features=768, bias=False)
|
183 |
+
(pos_q_proj): Linear(in_features=768, out_features=768, bias=True)
|
184 |
+
(dropout): StableDropout()
|
185 |
+
)
|
186 |
+
(output): DebertaSelfOutput(
|
187 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
188 |
+
(LayerNorm): DebertaLayerNorm()
|
189 |
+
(dropout): StableDropout()
|
190 |
+
)
|
191 |
+
)
|
192 |
+
(intermediate): DebertaIntermediate(
|
193 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
194 |
+
(intermediate_act_fn): GELUActivation()
|
195 |
+
)
|
196 |
+
(output): DebertaOutput(
|
197 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
198 |
+
(LayerNorm): DebertaLayerNorm()
|
199 |
+
(dropout): StableDropout()
|
200 |
+
)
|
201 |
+
)
|
202 |
+
(2): DebertaLayer(
|
203 |
+
(attention): DebertaAttention(
|
204 |
+
(self): DisentangledSelfAttention(
|
205 |
+
(in_proj): Linear(in_features=768, out_features=2304, bias=False)
|
206 |
+
(pos_dropout): StableDropout()
|
207 |
+
(pos_proj): Linear(in_features=768, out_features=768, bias=False)
|
208 |
+
(pos_q_proj): Linear(in_features=768, out_features=768, bias=True)
|
209 |
+
(dropout): StableDropout()
|
210 |
+
)
|
211 |
+
(output): DebertaSelfOutput(
|
212 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
213 |
+
(LayerNorm): DebertaLayerNorm()
|
214 |
+
(dropout): StableDropout()
|
215 |
+
)
|
216 |
+
)
|
217 |
+
(intermediate): DebertaIntermediate(
|
218 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
219 |
+
(intermediate_act_fn): GELUActivation()
|
220 |
+
)
|
221 |
+
(output): DebertaOutput(
|
222 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
223 |
+
(LayerNorm): DebertaLayerNorm()
|
224 |
+
(dropout): StableDropout()
|
225 |
+
)
|
226 |
+
)
|
227 |
+
(3): DebertaLayer(
|
228 |
+
(attention): DebertaAttention(
|
229 |
+
(self): DisentangledSelfAttention(
|
230 |
+
(in_proj): Linear(in_features=768, out_features=2304, bias=False)
|
231 |
+
(pos_dropout): StableDropout()
|
232 |
+
(pos_proj): Linear(in_features=768, out_features=768, bias=False)
|
233 |
+
(pos_q_proj): Linear(in_features=768, out_features=768, bias=True)
|
234 |
+
(dropout): StableDropout()
|
235 |
+
)
|
236 |
+
(output): DebertaSelfOutput(
|
237 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
238 |
+
(LayerNorm): DebertaLayerNorm()
|
239 |
+
(dropout): StableDropout()
|
240 |
+
)
|
241 |
+
)
|
242 |
+
(intermediate): DebertaIntermediate(
|
243 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
244 |
+
(intermediate_act_fn): GELUActivation()
|
245 |
+
)
|
246 |
+
(output): DebertaOutput(
|
247 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
248 |
+
(LayerNorm): DebertaLayerNorm()
|
249 |
+
(dropout): StableDropout()
|
250 |
+
)
|
251 |
+
)
|
252 |
+
(4): DebertaLayer(
|
253 |
+
(attention): DebertaAttention(
|
254 |
+
(self): DisentangledSelfAttention(
|
255 |
+
(in_proj): Linear(in_features=768, out_features=2304, bias=False)
|
256 |
+
(pos_dropout): StableDropout()
|
257 |
+
(pos_proj): Linear(in_features=768, out_features=768, bias=False)
|
258 |
+
(pos_q_proj): Linear(in_features=768, out_features=768, bias=True)
|
259 |
+
(dropout): StableDropout()
|
260 |
+
)
|
261 |
+
(output): DebertaSelfOutput(
|
262 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
263 |
+
(LayerNorm): DebertaLayerNorm()
|
264 |
+
(dropout): StableDropout()
|
265 |
+
)
|
266 |
+
)
|
267 |
+
(intermediate): DebertaIntermediate(
|
268 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
269 |
+
(intermediate_act_fn): GELUActivation()
|
270 |
+
)
|
271 |
+
(output): DebertaOutput(
|
272 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
273 |
+
(LayerNorm): DebertaLayerNorm()
|
274 |
+
(dropout): StableDropout()
|
275 |
+
)
|
276 |
+
)
|
277 |
+
(5): DebertaLayer(
|
278 |
+
(attention): DebertaAttention(
|
279 |
+
(self): DisentangledSelfAttention(
|
280 |
+
(in_proj): Linear(in_features=768, out_features=2304, bias=False)
|
281 |
+
(pos_dropout): StableDropout()
|
282 |
+
(pos_proj): Linear(in_features=768, out_features=768, bias=False)
|
283 |
+
(pos_q_proj): Linear(in_features=768, out_features=768, bias=True)
|
284 |
+
(dropout): StableDropout()
|
285 |
+
)
|
286 |
+
(output): DebertaSelfOutput(
|
287 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
288 |
+
(LayerNorm): DebertaLayerNorm()
|
289 |
+
(dropout): StableDropout()
|
290 |
+
)
|
291 |
+
)
|
292 |
+
(intermediate): DebertaIntermediate(
|
293 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
294 |
+
(intermediate_act_fn): GELUActivation()
|
295 |
+
)
|
296 |
+
(output): DebertaOutput(
|
297 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
298 |
+
(LayerNorm): DebertaLayerNorm()
|
299 |
+
(dropout): StableDropout()
|
300 |
+
)
|
301 |
+
)
|
302 |
+
(6): DebertaLayer(
|
303 |
+
(attention): DebertaAttention(
|
304 |
+
(self): DisentangledSelfAttention(
|
305 |
+
(in_proj): Linear(in_features=768, out_features=2304, bias=False)
|
306 |
+
(pos_dropout): StableDropout()
|
307 |
+
(pos_proj): Linear(in_features=768, out_features=768, bias=False)
|
308 |
+
(pos_q_proj): Linear(in_features=768, out_features=768, bias=True)
|
309 |
+
(dropout): StableDropout()
|
310 |
+
)
|
311 |
+
(output): DebertaSelfOutput(
|
312 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
313 |
+
(LayerNorm): DebertaLayerNorm()
|
314 |
+
(dropout): StableDropout()
|
315 |
+
)
|
316 |
+
)
|
317 |
+
(intermediate): DebertaIntermediate(
|
318 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
319 |
+
(intermediate_act_fn): GELUActivation()
|
320 |
+
)
|
321 |
+
(output): DebertaOutput(
|
322 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
323 |
+
(LayerNorm): DebertaLayerNorm()
|
324 |
+
(dropout): StableDropout()
|
325 |
+
)
|
326 |
+
)
|
327 |
+
(7): DebertaLayer(
|
328 |
+
(attention): DebertaAttention(
|
329 |
+
(self): DisentangledSelfAttention(
|
330 |
+
(in_proj): Linear(in_features=768, out_features=2304, bias=False)
|
331 |
+
(pos_dropout): StableDropout()
|
332 |
+
(pos_proj): Linear(in_features=768, out_features=768, bias=False)
|
333 |
+
(pos_q_proj): Linear(in_features=768, out_features=768, bias=True)
|
334 |
+
(dropout): StableDropout()
|
335 |
+
)
|
336 |
+
(output): DebertaSelfOutput(
|
337 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
338 |
+
(LayerNorm): DebertaLayerNorm()
|
339 |
+
(dropout): StableDropout()
|
340 |
+
)
|
341 |
+
)
|
342 |
+
(intermediate): DebertaIntermediate(
|
343 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
344 |
+
(intermediate_act_fn): GELUActivation()
|
345 |
+
)
|
346 |
+
(output): DebertaOutput(
|
347 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
348 |
+
(LayerNorm): DebertaLayerNorm()
|
349 |
+
(dropout): StableDropout()
|
350 |
+
)
|
351 |
+
)
|
352 |
+
(8): DebertaLayer(
|
353 |
+
(attention): DebertaAttention(
|
354 |
+
(self): DisentangledSelfAttention(
|
355 |
+
(in_proj): Linear(in_features=768, out_features=2304, bias=False)
|
356 |
+
(pos_dropout): StableDropout()
|
357 |
+
(pos_proj): Linear(in_features=768, out_features=768, bias=False)
|
358 |
+
(pos_q_proj): Linear(in_features=768, out_features=768, bias=True)
|
359 |
+
(dropout): StableDropout()
|
360 |
+
)
|
361 |
+
(output): DebertaSelfOutput(
|
362 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
363 |
+
(LayerNorm): DebertaLayerNorm()
|
364 |
+
(dropout): StableDropout()
|
365 |
+
)
|
366 |
+
)
|
367 |
+
(intermediate): DebertaIntermediate(
|
368 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
369 |
+
(intermediate_act_fn): GELUActivation()
|
370 |
+
)
|
371 |
+
(output): DebertaOutput(
|
372 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
373 |
+
(LayerNorm): DebertaLayerNorm()
|
374 |
+
(dropout): StableDropout()
|
375 |
+
)
|
376 |
+
)
|
377 |
+
(9): DebertaLayer(
|
378 |
+
(attention): DebertaAttention(
|
379 |
+
(self): DisentangledSelfAttention(
|
380 |
+
(in_proj): Linear(in_features=768, out_features=2304, bias=False)
|
381 |
+
(pos_dropout): StableDropout()
|
382 |
+
(pos_proj): Linear(in_features=768, out_features=768, bias=False)
|
383 |
+
(pos_q_proj): Linear(in_features=768, out_features=768, bias=True)
|
384 |
+
(dropout): StableDropout()
|
385 |
+
)
|
386 |
+
(output): DebertaSelfOutput(
|
387 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
388 |
+
(LayerNorm): DebertaLayerNorm()
|
389 |
+
(dropout): StableDropout()
|
390 |
+
)
|
391 |
+
)
|
392 |
+
(intermediate): DebertaIntermediate(
|
393 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
394 |
+
(intermediate_act_fn): GELUActivation()
|
395 |
+
)
|
396 |
+
(output): DebertaOutput(
|
397 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
398 |
+
(LayerNorm): DebertaLayerNorm()
|
399 |
+
(dropout): StableDropout()
|
400 |
+
)
|
401 |
+
)
|
402 |
+
(10): DebertaLayer(
|
403 |
+
(attention): DebertaAttention(
|
404 |
+
(self): DisentangledSelfAttention(
|
405 |
+
(in_proj): Linear(in_features=768, out_features=2304, bias=False)
|
406 |
+
(pos_dropout): StableDropout()
|
407 |
+
(pos_proj): Linear(in_features=768, out_features=768, bias=False)
|
408 |
+
(pos_q_proj): Linear(in_features=768, out_features=768, bias=True)
|
409 |
+
(dropout): StableDropout()
|
410 |
+
)
|
411 |
+
(output): DebertaSelfOutput(
|
412 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
413 |
+
(LayerNorm): DebertaLayerNorm()
|
414 |
+
(dropout): StableDropout()
|
415 |
+
)
|
416 |
+
)
|
417 |
+
(intermediate): DebertaIntermediate(
|
418 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
419 |
+
(intermediate_act_fn): GELUActivation()
|
420 |
+
)
|
421 |
+
(output): DebertaOutput(
|
422 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
423 |
+
(LayerNorm): DebertaLayerNorm()
|
424 |
+
(dropout): StableDropout()
|
425 |
+
)
|
426 |
+
)
|
427 |
+
(11): DebertaLayer(
|
428 |
+
(attention): DebertaAttention(
|
429 |
+
(self): DisentangledSelfAttention(
|
430 |
+
(in_proj): Linear(in_features=768, out_features=2304, bias=False)
|
431 |
+
(pos_dropout): StableDropout()
|
432 |
+
(pos_proj): Linear(in_features=768, out_features=768, bias=False)
|
433 |
+
(pos_q_proj): Linear(in_features=768, out_features=768, bias=True)
|
434 |
+
(dropout): StableDropout()
|
435 |
+
)
|
436 |
+
(output): DebertaSelfOutput(
|
437 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
438 |
+
(LayerNorm): DebertaLayerNorm()
|
439 |
+
(dropout): StableDropout()
|
440 |
+
)
|
441 |
+
)
|
442 |
+
(intermediate): DebertaIntermediate(
|
443 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
444 |
+
(intermediate_act_fn): GELUActivation()
|
445 |
+
)
|
446 |
+
(output): DebertaOutput(
|
447 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
448 |
+
(LayerNorm): DebertaLayerNorm()
|
449 |
+
(dropout): StableDropout()
|
450 |
+
)
|
451 |
+
)
|
452 |
+
)
|
453 |
+
(rel_embeddings): Embedding(1024, 768)
|
454 |
+
)
|
455 |
+
)
|
456 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
457 |
+
(classifier): Linear(in_features=768, out_features=37, bias=True)
|
458 |
+
)
|
459 |
+
2022-11-16 17:07:08,521 - __main__ - INFO - CONFIGS:{
|
460 |
+
"output_dir": "./eval_test1",
|
461 |
+
"per_device_train_batch_size": 16,
|
462 |
+
"per_device_eval_batch_size": 16,
|
463 |
+
"save_total_limit": 2,
|
464 |
+
"num_train_epochs": 3,
|
465 |
+
"seed": 1,
|
466 |
+
"load_best_model_at_end": true,
|
467 |
+
"evaluation_strategy": "epoch",
|
468 |
+
"save_strategy": "epoch",
|
469 |
+
"learning_rate": 2e-05,
|
470 |
+
"weight_decay": 0.01,
|
471 |
+
"fp16": true,
|
472 |
+
"logging_steps": 469.0
|
473 |
+
}
|
474 |
+
2022-11-16 17:07:08,522 - transformers.training_args - INFO - PyTorch: setting up devices
|
475 |
+
2022-11-16 17:07:08,557 - transformers.training_args - INFO - The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
|
476 |
+
2022-11-16 17:07:11,000 - transformers.trainer - INFO - Using cuda_amp half precision backend
|
477 |
+
2022-11-16 17:07:11,001 - __main__ - INFO - [[ MODEL EVALUATION ]]
|
478 |
+
2022-11-16 17:07:11,001 - transformers.trainer - INFO - The following columns in the evaluation set don't have a corresponding argument in `DebertaForTokenClassification.forward` and have been ignored: words, ner_tags, id. If words, ner_tags, id are not expected by `DebertaForTokenClassification.forward`, you can safely ignore this message.
|
479 |
+
2022-11-16 17:07:11,004 - transformers.trainer - INFO - ***** Running Evaluation *****
|
480 |
+
2022-11-16 17:07:11,004 - transformers.trainer - INFO - Num examples = 9479
|
481 |
+
2022-11-16 17:07:11,004 - transformers.trainer - INFO - Batch size = 16
|
482 |
+
2022-11-16 17:07:11,007 - transformers.tokenization_utils_base - WARNING - You're using a DebertaTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.
|
483 |
+
2022-11-16 17:07:33,916 - __main__ - INFO - {'eval_loss': 0.06115942820906639, 'eval_precision': 0.8953762782973517, 'eval_recall': 0.9100115483699032, 'eval_f1': 0.902634593356243, 'eval_accuracy': 0.9848035428915137, 'eval_runtime': 22.906, 'eval_samples_per_second': 413.822, 'eval_steps_per_second': 25.888, 'step': 0}
|
484 |
+
2022-11-16 17:07:33,916 - transformers.trainer - INFO - The following columns in the test set don't have a corresponding argument in `DebertaForTokenClassification.forward` and have been ignored: words, ner_tags, id. If words, ner_tags, id are not expected by `DebertaForTokenClassification.forward`, you can safely ignore this message.
|
485 |
+
2022-11-16 17:07:33,918 - transformers.trainer - INFO - ***** Running Prediction *****
|
486 |
+
2022-11-16 17:07:33,918 - transformers.trainer - INFO - Num examples = 9479
|
487 |
+
2022-11-16 17:07:33,918 - transformers.trainer - INFO - Batch size = 16
|
488 |
+
2022-11-16 17:07:59,630 - __main__ - INFO - precision recall f1-score support
|
489 |
+
|
490 |
+
CARDINAL 0.86 0.87 0.86 935
|
491 |
+
DATE 0.85 0.89 0.87 1602
|
492 |
+
EVENT 0.65 0.78 0.71 63
|
493 |
+
FAC 0.74 0.80 0.77 135
|
494 |
+
GPE 0.97 0.96 0.96 2240
|
495 |
+
LANGUAGE 0.83 0.68 0.75 22
|
496 |
+
LAW 0.71 0.68 0.69 40
|
497 |
+
LOC 0.74 0.77 0.76 179
|
498 |
+
MONEY 0.88 0.90 0.89 314
|
499 |
+
NORP 0.94 0.97 0.95 841
|
500 |
+
ORDINAL 0.79 0.87 0.83 195
|
501 |
+
ORG 0.92 0.92 0.92 1795
|
502 |
+
PERCENT 0.92 0.92 0.92 349
|
503 |
+
PERSON 0.95 0.95 0.95 1988
|
504 |
+
PRODUCT 0.65 0.76 0.70 76
|
505 |
+
QUANTITY 0.77 0.82 0.80 105
|
506 |
+
TIME 0.62 0.65 0.63 212
|
507 |
+
WORK_OF_ART 0.64 0.69 0.66 166
|
508 |
+
|
509 |
+
micro avg 0.90 0.91 0.90 11257
|
510 |
+
macro avg 0.80 0.83 0.81 11257
|
511 |
+
weighted avg 0.90 0.91 0.90 11257
|
512 |
+
|
scaler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1de1151bb371c7a9fcf0cdf747ea19c1e78511e69dbbc399a1e42e08562f77d2
|
3 |
+
size 559
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:31f8c1b6927b129b6987f9b4f5bfb276f770a427eb2d042836118c5cfe4e18a9
|
3 |
+
size 623
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "[CLS]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "[SEP]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": true,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "[MASK]",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": true,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "[PAD]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": true,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "[SEP]",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": true,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": true,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": true,
|
4 |
+
"bos_token": {
|
5 |
+
"__type": "AddedToken",
|
6 |
+
"content": "[CLS]",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": true,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"cls_token": {
|
13 |
+
"__type": "AddedToken",
|
14 |
+
"content": "[CLS]",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": true,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false
|
19 |
+
},
|
20 |
+
"do_lower_case": false,
|
21 |
+
"eos_token": {
|
22 |
+
"__type": "AddedToken",
|
23 |
+
"content": "[SEP]",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": true,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false
|
28 |
+
},
|
29 |
+
"errors": "replace",
|
30 |
+
"mask_token": {
|
31 |
+
"__type": "AddedToken",
|
32 |
+
"content": "[MASK]",
|
33 |
+
"lstrip": true,
|
34 |
+
"normalized": true,
|
35 |
+
"rstrip": false,
|
36 |
+
"single_word": false
|
37 |
+
},
|
38 |
+
"model_max_length": 512,
|
39 |
+
"name_or_path": "microsoft/deberta-base",
|
40 |
+
"pad_token": {
|
41 |
+
"__type": "AddedToken",
|
42 |
+
"content": "[PAD]",
|
43 |
+
"lstrip": false,
|
44 |
+
"normalized": true,
|
45 |
+
"rstrip": false,
|
46 |
+
"single_word": false
|
47 |
+
},
|
48 |
+
"sep_token": {
|
49 |
+
"__type": "AddedToken",
|
50 |
+
"content": "[SEP]",
|
51 |
+
"lstrip": false,
|
52 |
+
"normalized": true,
|
53 |
+
"rstrip": false,
|
54 |
+
"single_word": false
|
55 |
+
},
|
56 |
+
"special_tokens_map_file": null,
|
57 |
+
"tokenizer_class": "DebertaTokenizer",
|
58 |
+
"unk_token": {
|
59 |
+
"__type": "AddedToken",
|
60 |
+
"content": "[UNK]",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": true,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false
|
65 |
+
},
|
66 |
+
"vocab_type": "gpt2"
|
67 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.05693262815475464,
|
3 |
+
"best_model_checkpoint": "./models/microsoft/deberta-base_1668615764.565312/checkpoint-9400",
|
4 |
+
"epoch": 3.0,
|
5 |
+
"global_step": 14100,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.1,
|
12 |
+
"learning_rate": 1.9341843971631205e-05,
|
13 |
+
"loss": 0.2396,
|
14 |
+
"step": 469
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.2,
|
18 |
+
"learning_rate": 1.8676595744680853e-05,
|
19 |
+
"loss": 0.0934,
|
20 |
+
"step": 938
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.3,
|
24 |
+
"learning_rate": 1.8011347517730498e-05,
|
25 |
+
"loss": 0.076,
|
26 |
+
"step": 1407
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.4,
|
30 |
+
"learning_rate": 1.7346099290780143e-05,
|
31 |
+
"loss": 0.0742,
|
32 |
+
"step": 1876
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.5,
|
36 |
+
"learning_rate": 1.6680851063829788e-05,
|
37 |
+
"loss": 0.0697,
|
38 |
+
"step": 2345
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.6,
|
42 |
+
"learning_rate": 1.6015602836879433e-05,
|
43 |
+
"loss": 0.0612,
|
44 |
+
"step": 2814
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.7,
|
48 |
+
"learning_rate": 1.5350354609929078e-05,
|
49 |
+
"loss": 0.0645,
|
50 |
+
"step": 3283
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 0.8,
|
54 |
+
"learning_rate": 1.4685106382978724e-05,
|
55 |
+
"loss": 0.0558,
|
56 |
+
"step": 3752
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 0.9,
|
60 |
+
"learning_rate": 1.401985815602837e-05,
|
61 |
+
"loss": 0.0559,
|
62 |
+
"step": 4221
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 1.0,
|
66 |
+
"learning_rate": 1.3354609929078016e-05,
|
67 |
+
"loss": 0.0533,
|
68 |
+
"step": 4690
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 1.0,
|
72 |
+
"eval_accuracy": 0.9835180063569192,
|
73 |
+
"eval_f1": 0.8845294916144851,
|
74 |
+
"eval_loss": 0.05832871422171593,
|
75 |
+
"eval_precision": 0.8721934369602763,
|
76 |
+
"eval_recall": 0.8972195078617748,
|
77 |
+
"eval_runtime": 22.9422,
|
78 |
+
"eval_samples_per_second": 413.168,
|
79 |
+
"eval_steps_per_second": 25.848,
|
80 |
+
"step": 4700
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 1.1,
|
84 |
+
"learning_rate": 1.268936170212766e-05,
|
85 |
+
"loss": 0.0432,
|
86 |
+
"step": 5159
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 1.2,
|
90 |
+
"learning_rate": 1.2024113475177306e-05,
|
91 |
+
"loss": 0.0426,
|
92 |
+
"step": 5628
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 1.3,
|
96 |
+
"learning_rate": 1.135886524822695e-05,
|
97 |
+
"loss": 0.0416,
|
98 |
+
"step": 6097
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 1.4,
|
102 |
+
"learning_rate": 1.0693617021276597e-05,
|
103 |
+
"loss": 0.042,
|
104 |
+
"step": 6566
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 1.5,
|
108 |
+
"learning_rate": 1.0028368794326242e-05,
|
109 |
+
"loss": 0.0413,
|
110 |
+
"step": 7035
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 1.6,
|
114 |
+
"learning_rate": 9.363120567375887e-06,
|
115 |
+
"loss": 0.0388,
|
116 |
+
"step": 7504
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 1.7,
|
120 |
+
"learning_rate": 8.697872340425533e-06,
|
121 |
+
"loss": 0.0369,
|
122 |
+
"step": 7973
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 1.8,
|
126 |
+
"learning_rate": 8.032624113475178e-06,
|
127 |
+
"loss": 0.039,
|
128 |
+
"step": 8442
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 1.9,
|
132 |
+
"learning_rate": 7.367375886524823e-06,
|
133 |
+
"loss": 0.036,
|
134 |
+
"step": 8911
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 2.0,
|
138 |
+
"learning_rate": 6.702127659574469e-06,
|
139 |
+
"loss": 0.0397,
|
140 |
+
"step": 9380
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 2.0,
|
144 |
+
"eval_accuracy": 0.9839366902741495,
|
145 |
+
"eval_f1": 0.8953622417309568,
|
146 |
+
"eval_loss": 0.05693262815475464,
|
147 |
+
"eval_precision": 0.8937771089669824,
|
148 |
+
"eval_recall": 0.8969530070178555,
|
149 |
+
"eval_runtime": 22.8104,
|
150 |
+
"eval_samples_per_second": 415.555,
|
151 |
+
"eval_steps_per_second": 25.997,
|
152 |
+
"step": 9400
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 2.1,
|
156 |
+
"learning_rate": 6.036879432624114e-06,
|
157 |
+
"loss": 0.0263,
|
158 |
+
"step": 9849
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 2.2,
|
162 |
+
"learning_rate": 5.37163120567376e-06,
|
163 |
+
"loss": 0.0252,
|
164 |
+
"step": 10318
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 2.3,
|
168 |
+
"learning_rate": 4.707801418439717e-06,
|
169 |
+
"loss": 0.0254,
|
170 |
+
"step": 10787
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 2.39,
|
174 |
+
"learning_rate": 4.042553191489362e-06,
|
175 |
+
"loss": 0.028,
|
176 |
+
"step": 11256
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 2.49,
|
180 |
+
"learning_rate": 3.377304964539007e-06,
|
181 |
+
"loss": 0.0256,
|
182 |
+
"step": 11725
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 2.59,
|
186 |
+
"learning_rate": 2.7120567375886527e-06,
|
187 |
+
"loss": 0.0242,
|
188 |
+
"step": 12194
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 2.69,
|
192 |
+
"learning_rate": 2.046808510638298e-06,
|
193 |
+
"loss": 0.0287,
|
194 |
+
"step": 12663
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 2.79,
|
198 |
+
"learning_rate": 1.3815602836879433e-06,
|
199 |
+
"loss": 0.0242,
|
200 |
+
"step": 13132
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 2.89,
|
204 |
+
"learning_rate": 7.177304964539007e-07,
|
205 |
+
"loss": 0.025,
|
206 |
+
"step": 13601
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 2.99,
|
210 |
+
"learning_rate": 5.248226950354611e-08,
|
211 |
+
"loss": 0.0266,
|
212 |
+
"step": 14070
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 3.0,
|
216 |
+
"eval_accuracy": 0.9848035428915137,
|
217 |
+
"eval_f1": 0.902634593356243,
|
218 |
+
"eval_loss": 0.06115942820906639,
|
219 |
+
"eval_precision": 0.8953762782973517,
|
220 |
+
"eval_recall": 0.9100115483699032,
|
221 |
+
"eval_runtime": 22.4809,
|
222 |
+
"eval_samples_per_second": 421.647,
|
223 |
+
"eval_steps_per_second": 26.378,
|
224 |
+
"step": 14100
|
225 |
+
}
|
226 |
+
],
|
227 |
+
"max_steps": 14100,
|
228 |
+
"num_train_epochs": 3,
|
229 |
+
"total_flos": 7109576555415114.0,
|
230 |
+
"trial_name": null,
|
231 |
+
"trial_params": null
|
232 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d368503b0706bb556b9151f13917aa8e5a85e45f4a65d7150cd257a0d68c42a
|
3 |
+
size 3439
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|