File size: 3,867 Bytes
88a291e
566dbff
88a291e
f9b5165
 
88a291e
89e2777
8c90089
8d866c0
 
c3b687e
8d866c0
8f704e3
 
 
3c27e83
8f704e3
 
 
3c27e83
56a273a
69d53a2
3c27e83
 
 
 
 
 
 
 
0039f4f
 
 
 
 
 
 
 
 
 
 
 
 
e5abd54
 
ebd60af
 
 
 
 
 
e5abd54
8bbcc74
 
 
c15bf0c
8bbcc74
3905996
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bbcc74
f9f3af3
8bbcc74
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
language: it
license: apache-2.0
widget:
- text: "Il [MASK] ha chiesto revocarsi l'obbligo di pagamento"
---

<img  src="https://huggingface.co/dlicari/Italian-Legal-BERT/resolve/main/ITALIAN_LEGAL_BERT.jpg" width="600"/> 
<h1> ITALIAN-LEGAL-BERT:A pre-trained Transformer Language Model for Italian Law </h1>

ITALIAN-LEGAL-BERT is based on <a href="https://huggingface.co/dbmdz/bert-base-italian-xxl-cased">bert-base-italian-xxl-cased</a> with additional pre-training of the Italian BERT model on Italian civil law corpora. 
It achieves better results than the ‘general-purpose’ Italian BERT in different domain-specific tasks.

<h2>Training procedure</h2> 
We initialized ITALIAN-LEGAL-BERT with ITALIAN XXL BERT
and pretrained for an additional 4 epochs on 3.7 GB of preprocessed text from the National Jurisprudential
Archive using the Huggingface PyTorch-Transformers library. We used BERT architecture
with a language modeling head on top, AdamW Optimizer, initial learning rate 5e-5 (with
linear learning rate decay, ends at 2.525e-9), sequence length 512, batch size 10 (imposed
by GPU capacity), 8.4 million training steps, device 1*GPU V100 16GB
<p />
<h2> Usage </h2> 

ITALIAN-LEGAL-BERT model can be loaded like:

```python
from transformers import AutoModel, AutoTokenizer
model_name = "dlicari/Italian-Legal-BERT"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
```

You can use the Transformers library fill-mask pipeline to do inference with ITALIAN-LEGAL-BERT. 
```python
from transformers import pipeline
model_name = "dlicari/Italian-Legal-BERT"
fill_mask = pipeline("fill-mask", model_name)
fill_mask("Il [MASK] ha chiesto revocarsi l'obbligo di pagamento")
#[{'sequence': "Il ricorrente ha chiesto revocarsi l'obbligo di pagamento",'score': 0.7264330387115479},
# {'sequence': "Il convenuto ha chiesto revocarsi l'obbligo di pagamento",'score': 0.09641049802303314},
# {'sequence': "Il resistente ha chiesto revocarsi l'obbligo di pagamento",'score': 0.039877112954854965},
# {'sequence': "Il lavoratore ha chiesto revocarsi l'obbligo di pagamento",'score': 0.028993653133511543},
# {'sequence': "Il Ministero ha chiesto revocarsi l'obbligo di pagamento", 'score': 0.025297977030277252}]
```

In this  [COLAB: ITALIAN-LEGAL-BERT: Minimal Start for Italian Legal Downstream Tasks](https://colab.research.google.com/drive/1aXOmqr70fjm8lYgIoGJMZDsK0QRIL4Lt?usp=sharing)
 how to use it for sentence similarity, sentence classification, and named entity recognition
 - https://colab.research.google.com/drive/1aXOmqr70fjm8lYgIoGJMZDsK0QRIL4Lt?usp=sharing

<img  src="https://huggingface.co/dlicari/Italian-Legal-BERT/resolve/main/semantic_text_similarity.jpg" width="700"/> 



<h2> Citation </h2>
If you find our resource or paper is useful, please consider including the following citation in your paper.

```
@inproceedings{licari_italian-legal-bert_2022,
	address = {Bozen-Bolzano, Italy},
	series = {{CEUR} {Workshop} {Proceedings}},
	title = {{ITALIAN}-{LEGAL}-{BERT}: {A} {Pre}-trained {Transformer} {Language} {Model} for {Italian} {Law}},
	volume = {3256},
	shorttitle = {{ITALIAN}-{LEGAL}-{BERT}},
	url = {https://ceur-ws.org/Vol-3256/#km4law3},
	language = {en},
	urldate = {2022-11-19},
	booktitle = {Companion {Proceedings} of the 23rd {International} {Conference} on {Knowledge} {Engineering} and {Knowledge} {Management}},
	publisher = {CEUR},
	author = {Licari, Daniele and Comandè, Giovanni},
	editor = {Symeonidou, Danai and Yu, Ran and Ceolin, Davide and Poveda-Villalón, María and Audrito, Davide and Caro, Luigi Di and Grasso, Francesca and Nai, Roberto and Sulis, Emilio and Ekaputra, Fajar J. and Kutz, Oliver and Troquard, Nicolas},
	month = sep,
	year = {2022},
	note = {ISSN: 1613-0073},
	file = {Full Text PDF:https://ceur-ws.org/Vol-3256/km4law3.pdf},
}

```