--- language: it license: afl-3.0 widget: - text: Il [MASK] ha chiesto revocarsi l'obbligo di pagamento ---

ITALIAN-LEGAL-BERT:A pre-trained Transformer Language Model for Italian Law

ITALIAN-LEGAL-BERT is based on bert-base-italian-xxl-cased with additional pre-training of the Italian BERT model on Italian civil law corpora. It achieves better results than the ‘general-purpose’ Italian BERT in different domain-specific tasks. ITALIAN-LEGAL-BERT variants [NEW!!!] * FROM SCRATCH, It is the ITALIAN-LEGAL-BERT variant pre-trained from scratch on Italian legal documents (ITA-LEGAL-BERT-SC) based on the CamemBERT architecture * DISTILLED, a distilled version of ITALIAN-LEGAL-BERT ( DISTIL-ITA-LEGAL-BERT) For long documents * [LSG ITA LEGAL BERT](https://huggingface.co/dlicari/lsg16k-Italian-Legal-BERT), Local-Sparse-Global version of ITALIAN-LEGAL-BERT (FURTHER PRETRAINED) * [LSG ITA LEGAL BERT-SC](https://huggingface.co/dlicari/lsg16k-Italian-Legal-BERT-SC), Local-Sparse-Global version of ITALIAN-LEGAL-BERT-SC (FROM SCRATCH) *Note: We are working on the extended version of the paper with more details and the results of these new models. We will update you soon*

Training procedure

We initialized ITALIAN-LEGAL-BERT with ITALIAN XXL BERT and pretrained for an additional 4 epochs on 3.7 GB of preprocessed text from the National Jurisprudential Archive using the Huggingface PyTorch-Transformers library. We used BERT architecture with a language modeling head on top, AdamW Optimizer, initial learning rate 5e-5 (with linear learning rate decay, ends at 2.525e-9), sequence length 512, batch size 10 (imposed by GPU capacity), 8.4 million training steps, device 1*GPU V100 16GB

Usage

ITALIAN-LEGAL-BERT model can be loaded like: ```python from transformers import AutoModel, AutoTokenizer model_name = "dlicari/Italian-Legal-BERT" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) ``` You can use the Transformers library fill-mask pipeline to do inference with ITALIAN-LEGAL-BERT. ```python from transformers import pipeline model_name = "dlicari/Italian-Legal-BERT" fill_mask = pipeline("fill-mask", model_name) fill_mask("Il [MASK] ha chiesto revocarsi l'obbligo di pagamento") #[{'sequence': "Il ricorrente ha chiesto revocarsi l'obbligo di pagamento",'score': 0.7264330387115479}, # {'sequence': "Il convenuto ha chiesto revocarsi l'obbligo di pagamento",'score': 0.09641049802303314}, # {'sequence': "Il resistente ha chiesto revocarsi l'obbligo di pagamento",'score': 0.039877112954854965}, # {'sequence': "Il lavoratore ha chiesto revocarsi l'obbligo di pagamento",'score': 0.028993653133511543}, # {'sequence': "Il Ministero ha chiesto revocarsi l'obbligo di pagamento", 'score': 0.025297977030277252}] ``` In this [COLAB: ITALIAN-LEGAL-BERT: Minimal Start for Italian Legal Downstream Tasks](https://colab.research.google.com/drive/1ZOWaWnLaagT_PX6MmXMP2m3MAOVXkyRK?usp=sharing) how to use it for sentence similarity, sentence classification, and named entity recognition - https://colab.research.google.com/drive/1ZOWaWnLaagT_PX6MmXMP2m3MAOVXkyRK?usp=sharing

Citation

If you find our resource or paper is useful, please consider including the following citation in your paper. ``` @inproceedings{licari_italian-legal-bert_2022, address = {Bozen-Bolzano, Italy}, series = {{CEUR} {Workshop} {Proceedings}}, title = {{ITALIAN}-{LEGAL}-{BERT}: {A} {Pre}-trained {Transformer} {Language} {Model} for {Italian} {Law}}, volume = {3256}, shorttitle = {{ITALIAN}-{LEGAL}-{BERT}}, url = {https://ceur-ws.org/Vol-3256/#km4law3}, language = {en}, urldate = {2022-11-19}, booktitle = {Companion {Proceedings} of the 23rd {International} {Conference} on {Knowledge} {Engineering} and {Knowledge} {Management}}, publisher = {CEUR}, author = {Licari, Daniele and Comandè, Giovanni}, editor = {Symeonidou, Danai and Yu, Ran and Ceolin, Davide and Poveda-Villalón, María and Audrito, Davide and Caro, Luigi Di and Grasso, Francesca and Nai, Roberto and Sulis, Emilio and Ekaputra, Fajar J. and Kutz, Oliver and Troquard, Nicolas}, month = sep, year = {2022}, note = {ISSN: 1613-0073}, file = {Full Text PDF:https://ceur-ws.org/Vol-3256/km4law3.pdf}, } ```