--- language: it license: apache-2.0 widget: - text: "Il [MASK] ha chiesto revocarsi l'obbligo di pagamento" ---

ITALIAN-LEGAL-BERT:A pre-trained Transformer Language Model for Italian Law

ITALIAN-LEGAL-BERT is based on bert-base-italian-xxl-cased with additional pre-training of the Italian BERT model on Italian civil law corpora. It achieves better results than the ‘general-purpose’ Italian BERT in different domain-specific tasks.

Training procedure

We initialized ITALIAN-LEGAL-BERT with ITALIAN XXL BERT and pretrained for an additional 4 epochs on 3.7 GB of preprocessed text from the National Jurisprudential Archive using the Huggingface PyTorch-Transformers library. We used BERT architecture with a language modeling head on top, AdamW Optimizer, initial learning rate 5e-5 (with linear learning rate decay, ends at 2.525e-9), sequence length 512, batch size 10 (imposed by GPU capacity), 8.4 million training steps, device 1*GPU V100 16GB

Usage

ITALIAN-LEGAL-BERT model can be loaded like: ```python from transformers import AutoModel, AutoTokenizer model_name = "dlicari/Italian-Legal-BERT" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) ``` You can use the Transformers library fill-mask pipeline to do inference with ITALIAN-LEGAL-BERT. ```python from transformers import pipeline model_name = "dlicari/Italian-Legal-BERT" fill_mask = pipeline("fill-mask", model_name) fill_mask("Il [MASK] ha chiesto revocarsi l'obbligo di pagamento") #[{'sequence': "Il ricorrente ha chiesto revocarsi l'obbligo di pagamento",'score': 0.7264330387115479}, # {'sequence': "Il convenuto ha chiesto revocarsi l'obbligo di pagamento",'score': 0.09641049802303314}, # {'sequence': "Il resistente ha chiesto revocarsi l'obbligo di pagamento",'score': 0.039877112954854965}, # {'sequence': "Il lavoratore ha chiesto revocarsi l'obbligo di pagamento",'score': 0.028993653133511543}, # {'sequence': "Il Ministero ha chiesto revocarsi l'obbligo di pagamento", 'score': 0.025297977030277252}] ``` In this [COLAB: ITALIAN-LEGAL-BERT: Minimal Start for Italian Legal Downstream Tasks](https://colab.research.google.com/drive/1aXOmqr70fjm8lYgIoGJMZDsK0QRIL4Lt?usp=sharing) how to use it for sentence similarity, sentence classification, and named entity recognition - https://colab.research.google.com/drive/1aXOmqr70fjm8lYgIoGJMZDsK0QRIL4Lt?usp=sharing

Citation

If you find our resource or paper is useful, please consider including the following citation in your paper. ``` @article{ita_legalbert_2022, author = {Daniele Licari and Giovanni Comandè}, title = {ITALIAN-LEGAL-BERT: A Pre-trained Transformer Language Model for Italian Law}, booktitle = {Proceedings of The Knowledge Management for Law Workshop (KM4LAW)} note = {Accepted for publication}, year = {2022} } ```