Commit
·
cc23a7d
1
Parent(s):
8ab6499
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- lextreme
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: distilbert-base-multilingual-cased-mapa_fine-ner
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Token Classification
|
17 |
+
type: token-classification
|
18 |
+
dataset:
|
19 |
+
name: lextreme
|
20 |
+
type: lextreme
|
21 |
+
config: mapa_fine
|
22 |
+
split: test
|
23 |
+
args: mapa_fine
|
24 |
+
metrics:
|
25 |
+
- name: Precision
|
26 |
+
type: precision
|
27 |
+
value: 0.8763335204941044
|
28 |
+
- name: Recall
|
29 |
+
type: recall
|
30 |
+
value: 0.9115199299167762
|
31 |
+
- name: F1
|
32 |
+
type: f1
|
33 |
+
value: 0.8935804766335075
|
34 |
+
- name: Accuracy
|
35 |
+
type: accuracy
|
36 |
+
value: 0.9956876979901592
|
37 |
+
---
|
38 |
+
|
39 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
40 |
+
should probably proofread and complete it, then remove this comment. -->
|
41 |
+
|
42 |
+
# distilbert-base-multilingual-cased-mapa_fine-ner
|
43 |
+
|
44 |
+
This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the lextreme dataset.
|
45 |
+
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 0.0282
|
47 |
+
- Precision: 0.8763
|
48 |
+
- Recall: 0.9115
|
49 |
+
- F1: 0.8936
|
50 |
+
- Accuracy: 0.9957
|
51 |
+
|
52 |
+
## Model description
|
53 |
+
|
54 |
+
More information needed
|
55 |
+
|
56 |
+
## Intended uses & limitations
|
57 |
+
|
58 |
+
More information needed
|
59 |
+
|
60 |
+
## Training and evaluation data
|
61 |
+
|
62 |
+
More information needed
|
63 |
+
|
64 |
+
## Training procedure
|
65 |
+
|
66 |
+
### Training hyperparameters
|
67 |
+
|
68 |
+
The following hyperparameters were used during training:
|
69 |
+
- learning_rate: 2e-05
|
70 |
+
- train_batch_size: 16
|
71 |
+
- eval_batch_size: 16
|
72 |
+
- seed: 42
|
73 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
74 |
+
- lr_scheduler_type: linear
|
75 |
+
- num_epochs: 10
|
76 |
+
|
77 |
+
### Training results
|
78 |
+
|
79 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
+
| 0.0244 | 1.0 | 1739 | 0.0202 | 0.8083 | 0.9314 | 0.8655 | 0.9941 |
|
82 |
+
| 0.0154 | 2.0 | 3478 | 0.0173 | 0.8813 | 0.9006 | 0.8908 | 0.9954 |
|
83 |
+
| 0.0118 | 3.0 | 5217 | 0.0161 | 0.8885 | 0.9131 | 0.9006 | 0.9960 |
|
84 |
+
| 0.0084 | 4.0 | 6956 | 0.0194 | 0.8485 | 0.9295 | 0.8871 | 0.9953 |
|
85 |
+
| 0.0069 | 5.0 | 8695 | 0.0219 | 0.8583 | 0.9198 | 0.8880 | 0.9953 |
|
86 |
+
| 0.0054 | 6.0 | 10434 | 0.0229 | 0.8622 | 0.9160 | 0.8883 | 0.9954 |
|
87 |
+
| 0.0032 | 7.0 | 12173 | 0.0248 | 0.8817 | 0.8979 | 0.8898 | 0.9956 |
|
88 |
+
| 0.0023 | 8.0 | 13912 | 0.0265 | 0.8900 | 0.9023 | 0.8961 | 0.9958 |
|
89 |
+
| 0.0018 | 9.0 | 15651 | 0.0275 | 0.8657 | 0.9137 | 0.8890 | 0.9954 |
|
90 |
+
| 0.0016 | 10.0 | 17390 | 0.0282 | 0.8763 | 0.9115 | 0.8936 | 0.9957 |
|
91 |
+
|
92 |
+
|
93 |
+
### Framework versions
|
94 |
+
|
95 |
+
- Transformers 4.26.0
|
96 |
+
- Pytorch 1.13.1+cu117
|
97 |
+
- Datasets 2.9.0
|
98 |
+
- Tokenizers 0.13.2
|