Commit
·
79a4e9c
1
Parent(s):
c94cda1
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- lextreme
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: xlm-roberta-base-mapa_coarse-ner
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Token Classification
|
17 |
+
type: token-classification
|
18 |
+
dataset:
|
19 |
+
name: lextreme
|
20 |
+
type: lextreme
|
21 |
+
config: mapa_coarse
|
22 |
+
split: test
|
23 |
+
args: mapa_coarse
|
24 |
+
metrics:
|
25 |
+
- name: Precision
|
26 |
+
type: precision
|
27 |
+
value: 0.6624395127648923
|
28 |
+
- name: Recall
|
29 |
+
type: recall
|
30 |
+
value: 0.6656606304493629
|
31 |
+
- name: F1
|
32 |
+
type: f1
|
33 |
+
value: 0.6640461654261103
|
34 |
+
- name: Accuracy
|
35 |
+
type: accuracy
|
36 |
+
value: 0.9872255987419513
|
37 |
+
---
|
38 |
+
|
39 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
40 |
+
should probably proofread and complete it, then remove this comment. -->
|
41 |
+
|
42 |
+
# xlm-roberta-base-mapa_coarse-ner
|
43 |
+
|
44 |
+
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the lextreme dataset.
|
45 |
+
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 0.0515
|
47 |
+
- Precision: 0.6624
|
48 |
+
- Recall: 0.6657
|
49 |
+
- F1: 0.6640
|
50 |
+
- Accuracy: 0.9872
|
51 |
+
|
52 |
+
## Model description
|
53 |
+
|
54 |
+
More information needed
|
55 |
+
|
56 |
+
## Intended uses & limitations
|
57 |
+
|
58 |
+
More information needed
|
59 |
+
|
60 |
+
## Training and evaluation data
|
61 |
+
|
62 |
+
More information needed
|
63 |
+
|
64 |
+
## Training procedure
|
65 |
+
|
66 |
+
### Training hyperparameters
|
67 |
+
|
68 |
+
The following hyperparameters were used during training:
|
69 |
+
- learning_rate: 2e-05
|
70 |
+
- train_batch_size: 16
|
71 |
+
- eval_batch_size: 16
|
72 |
+
- seed: 42
|
73 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
74 |
+
- lr_scheduler_type: linear
|
75 |
+
- num_epochs: 10
|
76 |
+
|
77 |
+
### Training results
|
78 |
+
|
79 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
+
| 0.0584 | 1.0 | 1739 | 0.0576 | 0.6088 | 0.5790 | 0.5935 | 0.9860 |
|
82 |
+
| 0.0475 | 2.0 | 3478 | 0.0522 | 0.6455 | 0.6574 | 0.6514 | 0.9870 |
|
83 |
+
| 0.0409 | 3.0 | 5217 | 0.0517 | 0.6490 | 0.6675 | 0.6581 | 0.9871 |
|
84 |
+
| 0.04 | 4.0 | 6956 | 0.0516 | 0.6562 | 0.6720 | 0.6640 | 0.9871 |
|
85 |
+
| 0.0422 | 5.0 | 8695 | 0.0513 | 0.6573 | 0.6722 | 0.6647 | 0.9871 |
|
86 |
+
| 0.0398 | 6.0 | 10434 | 0.0515 | 0.6602 | 0.6697 | 0.6649 | 0.9872 |
|
87 |
+
| 0.0407 | 7.0 | 12173 | 0.0516 | 0.6612 | 0.6663 | 0.6638 | 0.9872 |
|
88 |
+
| 0.0382 | 8.0 | 13912 | 0.0516 | 0.6626 | 0.6648 | 0.6637 | 0.9872 |
|
89 |
+
| 0.0398 | 9.0 | 15651 | 0.0515 | 0.6627 | 0.6660 | 0.6643 | 0.9872 |
|
90 |
+
| 0.0401 | 10.0 | 17390 | 0.0515 | 0.6624 | 0.6657 | 0.6640 | 0.9872 |
|
91 |
+
|
92 |
+
|
93 |
+
### Framework versions
|
94 |
+
|
95 |
+
- Transformers 4.26.0
|
96 |
+
- Pytorch 1.13.1+cu117
|
97 |
+
- Datasets 2.9.0
|
98 |
+
- Tokenizers 0.13.2
|