dmargutierrez commited on
Commit
79a4e9c
·
1 Parent(s): c94cda1

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +98 -0
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - lextreme
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: xlm-roberta-base-mapa_coarse-ner
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: lextreme
20
+ type: lextreme
21
+ config: mapa_coarse
22
+ split: test
23
+ args: mapa_coarse
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.6624395127648923
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.6656606304493629
31
+ - name: F1
32
+ type: f1
33
+ value: 0.6640461654261103
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.9872255987419513
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # xlm-roberta-base-mapa_coarse-ner
43
+
44
+ This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the lextreme dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.0515
47
+ - Precision: 0.6624
48
+ - Recall: 0.6657
49
+ - F1: 0.6640
50
+ - Accuracy: 0.9872
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 2e-05
70
+ - train_batch_size: 16
71
+ - eval_batch_size: 16
72
+ - seed: 42
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: linear
75
+ - num_epochs: 10
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | 0.0584 | 1.0 | 1739 | 0.0576 | 0.6088 | 0.5790 | 0.5935 | 0.9860 |
82
+ | 0.0475 | 2.0 | 3478 | 0.0522 | 0.6455 | 0.6574 | 0.6514 | 0.9870 |
83
+ | 0.0409 | 3.0 | 5217 | 0.0517 | 0.6490 | 0.6675 | 0.6581 | 0.9871 |
84
+ | 0.04 | 4.0 | 6956 | 0.0516 | 0.6562 | 0.6720 | 0.6640 | 0.9871 |
85
+ | 0.0422 | 5.0 | 8695 | 0.0513 | 0.6573 | 0.6722 | 0.6647 | 0.9871 |
86
+ | 0.0398 | 6.0 | 10434 | 0.0515 | 0.6602 | 0.6697 | 0.6649 | 0.9872 |
87
+ | 0.0407 | 7.0 | 12173 | 0.0516 | 0.6612 | 0.6663 | 0.6638 | 0.9872 |
88
+ | 0.0382 | 8.0 | 13912 | 0.0516 | 0.6626 | 0.6648 | 0.6637 | 0.9872 |
89
+ | 0.0398 | 9.0 | 15651 | 0.0515 | 0.6627 | 0.6660 | 0.6643 | 0.9872 |
90
+ | 0.0401 | 10.0 | 17390 | 0.0515 | 0.6624 | 0.6657 | 0.6640 | 0.9872 |
91
+
92
+
93
+ ### Framework versions
94
+
95
+ - Transformers 4.26.0
96
+ - Pytorch 1.13.1+cu117
97
+ - Datasets 2.9.0
98
+ - Tokenizers 0.13.2