--- license: mit tags: - generated_from_trainer datasets: - lextreme metrics: - precision - recall - f1 - accuracy model-index: - name: xlm-roberta-base-mapa_coarse-ner results: - task: name: Token Classification type: token-classification dataset: name: lextreme type: lextreme config: mapa_coarse split: test args: mapa_coarse metrics: - name: Precision type: precision value: 0.6624395127648923 - name: Recall type: recall value: 0.6656606304493629 - name: F1 type: f1 value: 0.6640461654261103 - name: Accuracy type: accuracy value: 0.9872255987419513 --- # xlm-roberta-base-mapa_coarse-ner This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the lextreme dataset. It achieves the following results on the evaluation set: - Loss: 0.0515 - Precision: 0.6624 - Recall: 0.6657 - F1: 0.6640 - Accuracy: 0.9872 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0584 | 1.0 | 1739 | 0.0576 | 0.6088 | 0.5790 | 0.5935 | 0.9860 | | 0.0475 | 2.0 | 3478 | 0.0522 | 0.6455 | 0.6574 | 0.6514 | 0.9870 | | 0.0409 | 3.0 | 5217 | 0.0517 | 0.6490 | 0.6675 | 0.6581 | 0.9871 | | 0.04 | 4.0 | 6956 | 0.0516 | 0.6562 | 0.6720 | 0.6640 | 0.9871 | | 0.0422 | 5.0 | 8695 | 0.0513 | 0.6573 | 0.6722 | 0.6647 | 0.9871 | | 0.0398 | 6.0 | 10434 | 0.0515 | 0.6602 | 0.6697 | 0.6649 | 0.9872 | | 0.0407 | 7.0 | 12173 | 0.0516 | 0.6612 | 0.6663 | 0.6638 | 0.9872 | | 0.0382 | 8.0 | 13912 | 0.0516 | 0.6626 | 0.6648 | 0.6637 | 0.9872 | | 0.0398 | 9.0 | 15651 | 0.0515 | 0.6627 | 0.6660 | 0.6643 | 0.9872 | | 0.0401 | 10.0 | 17390 | 0.0515 | 0.6624 | 0.6657 | 0.6640 | 0.9872 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu117 - Datasets 2.9.0 - Tokenizers 0.13.2