File size: 2,216 Bytes
7d090a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- f1
- accuracy
model-index:
- name: vedt-lg
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: F1
      type: f1
      value: 0.95
    - name: Accuracy
      type: accuracy
      value: 0.94
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vedt-lg

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1643
- F1: 0.95
- Roc Auc: 0.96
- Accuracy: 0.94

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1   | Roc Auc | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:----:|:-------:|:--------:|
| 0.523         | 1.0   | 122  | 0.5292          | 0.53 | 0.67    | 0.45     |
| 0.3308        | 2.0   | 245  | 0.3331          | 0.82 | 0.86    | 0.79     |
| 0.1989        | 3.0   | 367  | 0.2265          | 0.91 | 0.93    | 0.9      |
| 0.1182        | 4.0   | 490  | 0.1949          | 0.92 | 0.94    | 0.92     |
| 0.0936        | 4.98  | 610  | 0.1643          | 0.95 | 0.96    | 0.94     |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.2.0
- Datasets 2.16.1
- Tokenizers 0.15.1