Model save
Browse files
README.md
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: google/vit-base-patch16-224-in21k
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- imagefolder
|
8 |
+
metrics:
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: vet-sm
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
name: Image Classification
|
16 |
+
type: image-classification
|
17 |
+
dataset:
|
18 |
+
name: imagefolder
|
19 |
+
type: imagefolder
|
20 |
+
config: default
|
21 |
+
split: train
|
22 |
+
args: default
|
23 |
+
metrics:
|
24 |
+
- name: F1
|
25 |
+
type: f1
|
26 |
+
value: 0.47
|
27 |
+
- name: Accuracy
|
28 |
+
type: accuracy
|
29 |
+
value: 0.31
|
30 |
+
---
|
31 |
+
|
32 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
33 |
+
should probably proofread and complete it, then remove this comment. -->
|
34 |
+
|
35 |
+
# vet-sm
|
36 |
+
|
37 |
+
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
|
38 |
+
It achieves the following results on the evaluation set:
|
39 |
+
- Loss: 0.2940
|
40 |
+
- F1: 0.47
|
41 |
+
- Roc Auc: 0.66
|
42 |
+
- Accuracy: 0.31
|
43 |
+
|
44 |
+
## Model description
|
45 |
+
|
46 |
+
More information needed
|
47 |
+
|
48 |
+
## Intended uses & limitations
|
49 |
+
|
50 |
+
More information needed
|
51 |
+
|
52 |
+
## Training and evaluation data
|
53 |
+
|
54 |
+
More information needed
|
55 |
+
|
56 |
+
## Training procedure
|
57 |
+
|
58 |
+
### Training hyperparameters
|
59 |
+
|
60 |
+
The following hyperparameters were used during training:
|
61 |
+
- learning_rate: 5e-05
|
62 |
+
- train_batch_size: 8
|
63 |
+
- eval_batch_size: 16
|
64 |
+
- seed: 42
|
65 |
+
- gradient_accumulation_steps: 4
|
66 |
+
- total_train_batch_size: 32
|
67 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
68 |
+
- lr_scheduler_type: linear
|
69 |
+
- lr_scheduler_warmup_ratio: 0.1
|
70 |
+
- num_epochs: 5
|
71 |
+
|
72 |
+
### Training results
|
73 |
+
|
74 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
|
75 |
+
|:-------------:|:-----:|:----:|:---------------:|:----:|:-------:|:--------:|
|
76 |
+
| 0.4074 | 0.99 | 67 | 0.3991 | 0.0 | 0.5 | 0.0 |
|
77 |
+
| 0.3597 | 2.0 | 135 | 0.3546 | 0.01 | 0.5 | 0.01 |
|
78 |
+
| 0.3191 | 2.99 | 202 | 0.3307 | 0.18 | 0.55 | 0.1 |
|
79 |
+
| 0.2902 | 4.0 | 270 | 0.3034 | 0.39 | 0.62 | 0.25 |
|
80 |
+
| 0.2749 | 4.96 | 335 | 0.2940 | 0.47 | 0.66 | 0.31 |
|
81 |
+
|
82 |
+
|
83 |
+
### Framework versions
|
84 |
+
|
85 |
+
- Transformers 4.38.2
|
86 |
+
- Pytorch 2.2.0
|
87 |
+
- Datasets 2.16.1
|
88 |
+
- Tokenizers 0.15.1
|