dmartincc commited on
Commit
db5cb04
1 Parent(s): 727c15e

Model save

Browse files
Files changed (1) hide show
  1. README.md +88 -0
README.md ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: google/vit-base-patch16-224-in21k
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imagefolder
8
+ metrics:
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: vet-sm
13
+ results:
14
+ - task:
15
+ name: Image Classification
16
+ type: image-classification
17
+ dataset:
18
+ name: imagefolder
19
+ type: imagefolder
20
+ config: default
21
+ split: train
22
+ args: default
23
+ metrics:
24
+ - name: F1
25
+ type: f1
26
+ value: 0.47
27
+ - name: Accuracy
28
+ type: accuracy
29
+ value: 0.31
30
+ ---
31
+
32
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
33
+ should probably proofread and complete it, then remove this comment. -->
34
+
35
+ # vet-sm
36
+
37
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
38
+ It achieves the following results on the evaluation set:
39
+ - Loss: 0.2940
40
+ - F1: 0.47
41
+ - Roc Auc: 0.66
42
+ - Accuracy: 0.31
43
+
44
+ ## Model description
45
+
46
+ More information needed
47
+
48
+ ## Intended uses & limitations
49
+
50
+ More information needed
51
+
52
+ ## Training and evaluation data
53
+
54
+ More information needed
55
+
56
+ ## Training procedure
57
+
58
+ ### Training hyperparameters
59
+
60
+ The following hyperparameters were used during training:
61
+ - learning_rate: 5e-05
62
+ - train_batch_size: 8
63
+ - eval_batch_size: 16
64
+ - seed: 42
65
+ - gradient_accumulation_steps: 4
66
+ - total_train_batch_size: 32
67
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
68
+ - lr_scheduler_type: linear
69
+ - lr_scheduler_warmup_ratio: 0.1
70
+ - num_epochs: 5
71
+
72
+ ### Training results
73
+
74
+ | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
75
+ |:-------------:|:-----:|:----:|:---------------:|:----:|:-------:|:--------:|
76
+ | 0.4074 | 0.99 | 67 | 0.3991 | 0.0 | 0.5 | 0.0 |
77
+ | 0.3597 | 2.0 | 135 | 0.3546 | 0.01 | 0.5 | 0.01 |
78
+ | 0.3191 | 2.99 | 202 | 0.3307 | 0.18 | 0.55 | 0.1 |
79
+ | 0.2902 | 4.0 | 270 | 0.3034 | 0.39 | 0.62 | 0.25 |
80
+ | 0.2749 | 4.96 | 335 | 0.2940 | 0.47 | 0.66 | 0.31 |
81
+
82
+
83
+ ### Framework versions
84
+
85
+ - Transformers 4.38.2
86
+ - Pytorch 2.2.0
87
+ - Datasets 2.16.1
88
+ - Tokenizers 0.15.1