--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vet-sm results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.6643894107600341 --- # vet-sm This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0088 - Accuracy: 0.6644 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.4639 | 1.0 | 207 | 1.4477 | 0.4765 | | 1.1673 | 2.0 | 415 | 1.1658 | 0.5824 | | 0.875 | 3.0 | 622 | 1.0805 | 0.6157 | | 0.5449 | 4.0 | 830 | 1.0399 | 0.6413 | | 0.4905 | 4.99 | 1035 | 1.0088 | 0.6644 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.0 - Datasets 2.16.1 - Tokenizers 0.15.1