--- library_name: transformers license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-large-v3-chichewa results: [] --- # whisper-large-v3-chichewa This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.7213 - Wer: 77.8505 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.6163 | 7.4627 | 1000 | 1.8803 | 79.6019 | | 0.1102 | 14.9254 | 2000 | 2.2954 | 81.6099 | | 0.0654 | 22.3881 | 3000 | 2.5129 | 87.0942 | | 0.0502 | 29.8507 | 4000 | 2.6569 | 77.7621 | | 0.0482 | 37.3134 | 5000 | 2.7213 | 77.8505 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.0.1 - Datasets 3.0.0 - Tokenizers 0.19.1