train: ppo LunarLander-v2 trained agent with long training, higher bs
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +24 -24
- ppo-LunarLander-v2/policy.optimizer.pth +2 -2
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 289.96 +/- 22.59
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f34a4bf0280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f34a4bf0310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f34a4bf03a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f34a4bf0430>", "_build": "<function ActorCriticPolicy._build at 0x7f34a4bf04c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f34a4bf0550>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f34a4bf05e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f34a4bf0670>", "_predict": "<function ActorCriticPolicy._predict at 0x7f34a4bf0700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f34a4bf0790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f34a4bf0820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f34a4bf08b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f34a4bea840>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677793276755290215, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABquMD3h8pG64VamuIlgezERQQ27hIy9NwAAgD8AAIA/mjyXvZ71ND+cv6O6QK/HvsEflr3dxiM8AAAAAAAAAACgIQ4+Bcv2u049OTv6gvC5eMhFvQWhu7oAAAAAAACAP83cBT3x5ow/a+3ou56y6L4r4Ug9HGG0PAAAAAAAAAAAZggMvni4+T0N6009VLxfvmuTEb50iaQ9AAAAAAAAAAAAts89CzwjPzv7hzwaad2+ufYtPLpYkL0AAAAAAAAAAI03Vj53MYE+yavMvat5e76JXAk9g/30vQAAAAAAAAAAgPcsvTi2pruuqJu7gpkCPYtRZTvD3Lg3AACAPwAAgD+zxu09sJKqPz5bJD+QUNa+0723PfBqfT4AAAAAAAAAAADONL00Hwk/6ECAvT+YuL5byAO9YOW6PAAAAAAAAAAAhkOTPgMsmT9nOgM/o3HyvjA+wj5ISyc+AAAAAAAAAABtbja+49F2P8wSl71Ql+O+mnJGviNZpDwAAAAAAAAAAGahkzyVjU8/sKniun/0w76UI6k8daYRvQAAAAAAAAAA80DjPff1dz+h0DE+5r77vhWWGz7g2c89AAAAAAAAAAAAJd889qRnuq50Zrkij1O0AssSuQpThzgAAIA/AACAP2YQibxc2Ec7wwH1Pa2cM746JKk64gZdPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZ9XnaitJckCUhpRSlIwBbJRNfAGMAXSUR0CTgYPczqKQdX2UKGgGaAloD0MIUu3T8VhkckCUhpRSlGgVTUUDaBZHQJOCUeA/cFh1fZQoaAZoCWgPQwigibDhqZhyQJSGlFKUaBVNIwFoFkdAk4Ov7JnxrnV9lChoBmgJaA9DCLyTT49tj29AlIaUUpRoFU0SAWgWR0CThNeg+QlsdX2UKGgGaAloD0MIBBxCldpgcUCUhpRSlGgVTXUBaBZHQJOFgfhddE91fZQoaAZoCWgPQwi3skRnGaZyQJSGlFKUaBVNkgFoFkdAk4WL+DOC5HV9lChoBmgJaA9DCPYksDlHnHFAlIaUUpRoFU0wAWgWR0CThclwcYIjdX2UKGgGaAloD0MIRNsxdVcac0CUhpRSlGgVTQsBaBZHQJOGRj2Bas91fZQoaAZoCWgPQwgNjpJXp75wQJSGlFKUaBVNCAFoFkdAk4aShrWRR3V9lChoBmgJaA9DCAsIrYcvrHJAlIaUUpRoFU0NAWgWR0CThpAtFrmAdX2UKGgGaAloD0MI/KiG/R5PcUCUhpRSlGgVTQEBaBZHQJOHaD9Oymh1fZQoaAZoCWgPQwh0sz9QLjFwQJSGlFKUaBVL+WgWR0CTh38Gs3hodX2UKGgGaAloD0MI0/cagmMNcECUhpRSlGgVTW4BaBZHQJOIM31jAi51fZQoaAZoCWgPQwj4+8VsyZdwQJSGlFKUaBVNawFoFkdAk4n4AS39aXV9lChoBmgJaA9DCL1UbMyr9XBAlIaUUpRoFU0sAWgWR0CTirnJDE3sdX2UKGgGaAloD0MIBDkoYeaLcECUhpRSlGgVTRUBaBZHQJOKz7DVH4J1fZQoaAZoCWgPQwjFru3tliNzQJSGlFKUaBVNfgFoFkdAk4reDBdld3V9lChoBmgJaA9DCDElkuhltkFAlIaUUpRoFUvRaBZHQJOK+XokiUx1fZQoaAZoCWgPQwjrAIi7+uFvQJSGlFKUaBVNPwFoFkdAk41WU8mrsHV9lChoBmgJaA9DCBUfn5Bd3XBAlIaUUpRoFU0DAWgWR0CTjkI4lyBDdX2UKGgGaAloD0MITN2VXXBecUCUhpRSlGgVTTYBaBZHQJOO2fHxSYR1fZQoaAZoCWgPQwhBtixfFyZyQJSGlFKUaBVNRwJoFkdAk4+YSDh99nV9lChoBmgJaA9DCNv3qL8ednFAlIaUUpRoFU0JAWgWR0CTj6tMPBi1dX2UKGgGaAloD0MIBVPNrCW5bkCUhpRSlGgVTVIBaBZHQJOP1jUd7v51fZQoaAZoCWgPQwgCDwwg/GJuQJSGlFKUaBVNNQFoFkdAk5FSElE7XHV9lChoBmgJaA9DCM1bdR0qtHBAlIaUUpRoFU11AWgWR0CTkbc81XNkdX2UKGgGaAloD0MIGlJF8SqPcUCUhpRSlGgVS/5oFkdAk5MDtXxOL3V9lChoBmgJaA9DCIhnCTKCgXFAlIaUUpRoFU2LAWgWR0CTk17laKUFdX2UKGgGaAloD0MISG5Nuq20cECUhpRSlGgVTRoBaBZHQJOVU0EX+ER1fZQoaAZoCWgPQwhjsyPV9yFwQJSGlFKUaBVNLgFoFkdAk5YZfx+a0HV9lChoBmgJaA9DCOWaApmdDXBAlIaUUpRoFU0pAWgWR0CTljpV0cOtdX2UKGgGaAloD0MIuvQvSeUNc0CUhpRSlGgVTYsBaBZHQJOWWsYEW691fZQoaAZoCWgPQwjgLZCgeNRvQJSGlFKUaBVL92gWR0CTmnMPjGT+dX2UKGgGaAloD0MIJJf/kL6jcUCUhpRSlGgVTR0BaBZHQJOagzbeuV51fZQoaAZoCWgPQwgbZJKR87tyQJSGlFKUaBVNOgFoFkdAk5qdhuwX7HV9lChoBmgJaA9DCAowLH++o3JAlIaUUpRoFU2WAWgWR0CTmyCwKSgXdX2UKGgGaAloD0MIXFfMCO/9bECUhpRSlGgVS/9oFkdAk5srcGkeqHV9lChoBmgJaA9DCPcgBORL229AlIaUUpRoFU0hAWgWR0CTnIQUHpr2dX2UKGgGaAloD0MI18IstHOVbECUhpRSlGgVTVEBaBZHQJOduj+Jgst1fZQoaAZoCWgPQwgC02ndBqhuQJSGlFKUaBVNDwFoFkdAk538W9DhL3V9lChoBmgJaA9DCNz2Pepv/nBAlIaUUpRoFU03AWgWR0CTn3e/Ho5hdX2UKGgGaAloD0MIJclzfZ8hcECUhpRSlGgVTSoBaBZHQJOgq6BiCrd1fZQoaAZoCWgPQwgXnwJg/AFxQJSGlFKUaBVL/mgWR0CToSYTTOPedX2UKGgGaAloD0MI1PIDV3nxbUCUhpRSlGgVTUEBaBZHQJOiFwqAjIJ1fZQoaAZoCWgPQwjpgY/BCrJwQJSGlFKUaBVNHAFoFkdAk7eAsf7rLXV9lChoBmgJaA9DCBwJNNiUtHJAlIaUUpRoFU0nAWgWR0CTt8AHmig1dX2UKGgGaAloD0MImPijqPO2cECUhpRSlGgVTf4CaBZHQJO4ZJd0JWx1fZQoaAZoCWgPQwhJ2o0+pnlyQJSGlFKUaBVL/GgWR0CTuVKziS7odX2UKGgGaAloD0MIMuVDULVkb0CUhpRSlGgVTV8BaBZHQJO5j/aQFLZ1fZQoaAZoCWgPQwilFHR7SRZzQJSGlFKUaBVL/mgWR0CTubgYP5HmdX2UKGgGaAloD0MItDo5Q7FgckCUhpRSlGgVTRMBaBZHQJO56BUaQ3h1fZQoaAZoCWgPQwgC2IAIcX5wQJSGlFKUaBVNKgFoFkdAk7sM7hegMHV9lChoBmgJaA9DCMMQOX29jnBAlIaUUpRoFU08AWgWR0CTuy/yGzrvdX2UKGgGaAloD0MIfcwHBLolckCUhpRSlGgVS/1oFkdAk7t4lhPTHHV9lChoBmgJaA9DCKM6Hcj6ZnBAlIaUUpRoFU0cAWgWR0CTu3gBLf1pdX2UKGgGaAloD0MIkx6GVqcmcUCUhpRSlGgVTSIBaBZHQJO8SaiKziV1fZQoaAZoCWgPQwgdk8X9R+RtQJSGlFKUaBVNAQFoFkdAk7xhLf1pTXV9lChoBmgJaA9DCFYOLbKdFG5AlIaUUpRoFU0IAWgWR0CTvYMHryDqdX2UKGgGaAloD0MITWn9LQHxbECUhpRSlGgVS/toFkdAk76cGX5WR3V9lChoBmgJaA9DCBB39SqyOnBAlIaUUpRoFU0dAWgWR0CTvr6Q/5ckdX2UKGgGaAloD0MI3NWryGjvcUCUhpRSlGgVTRkBaBZHQJPAc1WKdhB1fZQoaAZoCWgPQwhHyhZJuw1GQJSGlFKUaBVLw2gWR0CTwJM8ox5+dX2UKGgGaAloD0MIU8prJfRLckCUhpRSlGgVS/RoFkdAk8Drg88s+XV9lChoBmgJaA9DCMsuGFxzHnBAlIaUUpRoFU0WAWgWR0CTwadNFjNIdX2UKGgGaAloD0MI4gLQKF0wcECUhpRSlGgVTSABaBZHQJPBvC79Q411fZQoaAZoCWgPQwhIpdjRuEZyQJSGlFKUaBVNXAFoFkdAk8Hm6f8Mu3V9lChoBmgJaA9DCMsr19tmCnBAlIaUUpRoFU0bAWgWR0CTwfn6Eal2dX2UKGgGaAloD0MIAvBPqdJycUCUhpRSlGgVTQsBaBZHQJPDJ6MR6GB1fZQoaAZoCWgPQwhrRDAOLpxvQJSGlFKUaBVNFwFoFkdAk8ODhxYJV3V9lChoBmgJaA9DCIknu5kRLnFAlIaUUpRoFU30AWgWR0CTxD1ie/YbdX2UKGgGaAloD0MIJAwDllwNUkCUhpRSlGgVS+ZoFkdAk8RkI9kjHHV9lChoBmgJaA9DCHpuoSuRpW9AlIaUUpRoFU1CAWgWR0CTxHqC6H0sdX2UKGgGaAloD0MIP6phv+dGcECUhpRSlGgVTSIBaBZHQJPEvyPMjeN1fZQoaAZoCWgPQwj3cwry87FxQJSGlFKUaBVNIQFoFkdAk8TNdVvMr3V9lChoBmgJaA9DCOI+cmtSpHBAlIaUUpRoFUvzaBZHQJPFnUwztTl1fZQoaAZoCWgPQwjPvBx23xFxQJSGlFKUaBVNHAFoFkdAk8bPwd8zAXV9lChoBmgJaA9DCDTz5JpCJHJAlIaUUpRoFUvyaBZHQJPHNXlr/Kh1fZQoaAZoCWgPQwiVgQNaelJxQJSGlFKUaBVNEgFoFkdAk8gvDk2gnXV9lChoBmgJaA9DCMeb/Bbdz3FAlIaUUpRoFU0aAWgWR0CTyW3hn8KpdX2UKGgGaAloD0MIKlYNwpxjcUCUhpRSlGgVTTMBaBZHQJPJh99c8kl1fZQoaAZoCWgPQwjHn6hsWNdyQJSGlFKUaBVNPAFoFkdAk8qaiKziTHV9lChoBmgJaA9DCIqRJXOswnJAlIaUUpRoFU03AWgWR0CTyp+x4Y78dX2UKGgGaAloD0MIYr8n1ilGckCUhpRSlGgVS+BoFkdAk8q8FEAo5XV9lChoBmgJaA9DCOAO1CkPPnFAlIaUUpRoFUvmaBZHQJPLQaisXBR1fZQoaAZoCWgPQwjaVx6kJ4xuQJSGlFKUaBVNNgFoFkdAk8wNy5qdpnV9lChoBmgJaA9DCCdr1EP0THFAlIaUUpRoFU0tAWgWR0CTzmGoJiRXdX2UKGgGaAloD0MIFtwPeOCJckCUhpRSlGgVTUEBaBZHQJPOiSZBsyl1fZQoaAZoCWgPQwgNHNDSlUpwQJSGlFKUaBVNTAFoFkdAk87YJ7b+LnV9lChoBmgJaA9DCJAwDFjyunBAlIaUUpRoFU0hAWgWR0CTz2Yht+CsdX2UKGgGaAloD0MIhbNby6T5ckCUhpRSlGgVTTABaBZHQJPSIN3GGVR1fZQoaAZoCWgPQwhHVn4ZjGNzQJSGlFKUaBVNMQFoFkdAk9LpX6qKg3V9lChoBmgJaA9DCK702mys4WxAlIaUUpRoFU0NAWgWR0CT1YaPS2H+dX2UKGgGaAloD0MItcTKaOTxbUCUhpRSlGgVTfMBaBZHQJPWLj2i+L51fZQoaAZoCWgPQwgLtDukGNpCQJSGlFKUaBVL6WgWR0CT1okHlfZ3dX2UKGgGaAloD0MIQgddwmFVcUCUhpRSlGgVTQYBaBZHQJPXDbJwKjV1fZQoaAZoCWgPQwiWB+kp8rxtQJSGlFKUaBVNVAFoFkdAk9cebd8ArHV9lChoBmgJaA9DCN21hHzQoG9AlIaUUpRoFU0YAWgWR0CT2EB0p3HJdX2UKGgGaAloD0MI1T4djxk2ckCUhpRSlGgVTRsBaBZHQJPYPzPKMeh1fZQoaAZoCWgPQwh3SZwVkTNxQJSGlFKUaBVNQwFoFkdAk9hhdIGyHHV9lChoBmgJaA9DCCVa8nja4G9AlIaUUpRoFU0OAWgWR0CT2ZRfnfVJdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f69fc03d4c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f69fc03d550>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f69fc03d5e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f69fc03d670>", "_build": "<function ActorCriticPolicy._build at 0x7f69fc03d700>", "forward": "<function ActorCriticPolicy.forward at 0x7f69fc03d790>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f69fc03d820>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f69fc03d8b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f69fc03d940>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f69fc03d9d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f69fc03da60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f69fc03daf0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f69fc0b0d80>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 1048576, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677881368375497082, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAADNFJjzh4JS6Ujsus+uehDH69pq61LCzMwAAgD8AAIA/Zvu2POqPrz90Uz0/qe4bv0Thnbx1baa9AAAAAAAAAACaWuE8o6lBPSIgqL1LX7W+0cHxOv4Bo7wAAAAAAAAAAF1giD65egQ/w9sfvs4yGL8RM/I+fT5DvgAAAAAAAAAAGvkCvSlwXrpBFR0400kMM1TjUzjIaji3AACAPwAAgD/AO1U+x4bbPr7pjL6+fhq/1PhPPj5rL74AAAAAAAAAAJqfMryU1LE/vhi2vqmLsb4utNA7M+oLOwAAAAAAAAAADbjUveEUSz6GTDQ+Y6/Nvt2UnL3yfQE+AAAAAAAAAACzrN69w/OjP3UXD79fHwy/WSoUvjkynb4AAAAAAAAAAGY2qzw9XXi7tGk4vvCIPL4uZUi9IraEPwAAgD8AAAAAANSlPOR0aD/Nohk9uUJOv2INLD3jSj67AAAAAAAAAAAarfk9gwWbPm73db7mDw6/TZCBPZqbPL4AAAAAAAAAAE1wCT1II7K6kJutPBwYmDwpes26kNmDPQAAgD8AAIA/zRJWva4fszvsrAk+JCSyvkb7nj2My4k9AAAAAAAAgD/mgdM9HF1FPaI3vb68Nr6+hM3nvbtC2rwAAAAAAAAAAM3j1bwUkIC65UTTvW9bMTOwAI86j8FEswAAgD8AAIA/ZgkgvcO9fbqOuCU4IjMhM8M0cjv+pUG3AACAPwAAgD8doGC+JLiLP+JVYL6WFTi/mJCkvpz8ob0AAAAAAAAAAM2NTT7Yev0+9dL0vVA1C7/TQJg+NTEtvgAAAAAAAAAAmpFJOx/V8blBJMs9QLHrsfHSvDuomfezAACAPwAAgD9NeVg9nAbDPoCAULyDHge/79nbPdgm0zwAAAAAAAAAAJriYz0jIGY/jjZlPVCkRL9BAOc9rH7IvAAAAAAAAAAA85NoPnKMvD4TvIi+9ZkNv8YfgD7l2p6+AAAAAAAAAABNqZ29hdbDPAaXlz6sBaS+HY9aPja05T0AAAAAAAAAAGYOXL3Ot7M/iQedvpO3bL7SWq67zHEtvQAAAAAAAAAAZkOZvSPLVD1Ogyc+jFyzvik8Jr1v8xY+AAAAAAAAAADtpwm+RO+LPVYmlj4xwrS+ZcbHO15xfz4AAAAAAAAAAAAyPbxci0S626KPPQ6cYzwH31e7xc5HPQAAgD8AAIA/c77hPXj0wD2CEsG+ZkC9vqhNrL2iJdy9AAAAAAAAAACajbW8gD4APxvtMTzU7hS/hS3QvEcoDz0AAAAAAAAAADMDmDuPbmi6I1cFNU3lbTC4mPW4CyNutAAAgD8AAIA/AMZWvHH/N7uHI4a98zSNPDtcdTwSM3O9AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIu16aIgCmcECUhpRSlIwBbJRLx4wBdJRHQLOdBmqYJE91fZQoaAZoCWgPQwgSaRt/ollyQJSGlFKUaBVLymgWR0CznSfJFLFodX2UKGgGaAloD0MIQ3IycWsNc0CUhpRSlGgVS8VoFkdAs50+v2Xb/XV9lChoBmgJaA9DCB2rlJ5p1HJAlIaUUpRoFUvNaBZHQLOdR9ETg2t1fZQoaAZoCWgPQwjX+bfL/uBxQJSGlFKUaBVLr2gWR0CznUe5BkZrdX2UKGgGaAloD0MI9phIafb7cUCUhpRSlGgVS79oFkdAs51qkM1CPnV9lChoBmgJaA9DCC43GOqwvXNAlIaUUpRoFUvAaBZHQLOddl8PWhB1fZQoaAZoCWgPQwjtEWqGFE9zQJSGlFKUaBVLv2gWR0CznXs/pt78dX2UKGgGaAloD0MIk+F4PkMQcECUhpRSlGgVS7hoFkdAs5162F36h3V9lChoBmgJaA9DCNSdJ54zynNAlIaUUpRoFUvXaBZHQLOdlttALRd1fZQoaAZoCWgPQwge+YOBJ+RyQJSGlFKUaBVLx2gWR0CznaWsmv4edX2UKGgGaAloD0MIborHRXXOcUCUhpRSlGgVS8ZoFkdAs52xc7hegXV9lChoBmgJaA9DCPXabKyEeXNAlIaUUpRoFUvPaBZHQLOdyHSWqtJ1fZQoaAZoCWgPQwgP8Q9b+tZwQJSGlFKUaBVLqmgWR0CznfOz+m3wdX2UKGgGaAloD0MIfjUHCKbJcUCUhpRSlGgVS8hoFkdAs54DuXu3MXV9lChoBmgJaA9DCAQCnUmbx3JAlIaUUpRoFUvUaBZHQLOeDr0aqCJ1fZQoaAZoCWgPQwhzu5f75ORBQJSGlFKUaBVLXGgWR0CznjRcVxjsdX2UKGgGaAloD0MIr9LddTZycECUhpRSlGgVS7hoFkdAs55Eaya/h3V9lChoBmgJaA9DCEj6tIq+xXJAlIaUUpRoFUu3aBZHQLOeYPBBRht1fZQoaAZoCWgPQwhOuFfm7YZzQJSGlFKUaBVLzmgWR0Cznm1XiiqRdX2UKGgGaAloD0MI8icqGxZlcUCUhpRSlGgVS7toFkdAs55zYnOSn3V9lChoBmgJaA9DCMWu7e3WDHFAlIaUUpRoFUuuaBZHQLOedCFK02N1fZQoaAZoCWgPQwiRgNHlDU1xQJSGlFKUaBVLomgWR0Cznn978ejmdX2UKGgGaAloD0MIdzHNdK+QckCUhpRSlGgVS6FoFkdAs56I8nuy/3V9lChoBmgJaA9DCEYm4NdIWXFAlIaUUpRoFUutaBZHQLOejCUX5311fZQoaAZoCWgPQwgqAwe09D5zQJSGlFKUaBVL02gWR0CznpdXgccVdX2UKGgGaAloD0MIXfxtTxD6ckCUhpRSlGgVS81oFkdAs56gQsf7rXV9lChoBmgJaA9DCKhSswfaDnBAlIaUUpRoFUu2aBZHQLOeomRvFWJ1fZQoaAZoCWgPQwhaY9AJIRJyQJSGlFKUaBVLmmgWR0Cznrai0v4/dX2UKGgGaAloD0MI0SLb+T6MckCUhpRSlGgVS7toFkdAs56zkRzzVnV9lChoBmgJaA9DCA73kVsTa3FAlIaUUpRoFUvKaBZHQLOe0aef7Jp1fZQoaAZoCWgPQwjPu7GgMKJzQJSGlFKUaBVL3WgWR0CznvXbmEGrdX2UKGgGaAloD0MIIH2TpkFMc0CUhpRSlGgVS9NoFkdAs58EJ6Y3N3V9lChoBmgJaA9DCIgvE0WInXBAlIaUUpRoFUu0aBZHQLOfE/echDB1fZQoaAZoCWgPQwhTXFX2nfJzQJSGlFKUaBVL32gWR0CznxdLteD4dX2UKGgGaAloD0MIpz0l50Q5ckCUhpRSlGgVS8BoFkdAs58wBcRlH3V9lChoBmgJaA9DCPxwkBAlxHNAlIaUUpRoFUvhaBZHQLOfN6xgRbt1fZQoaAZoCWgPQwgNiuYB7FdzQJSGlFKUaBVLwmgWR0Czn1gk5ZKWdX2UKGgGaAloD0MILlkV4SaOckCUhpRSlGgVS8BoFkdAs59jfdhy83V9lChoBmgJaA9DCMx5xr5kZXNAlIaUUpRoFUvAaBZHQLOfYxR2r4p1fZQoaAZoCWgPQwgt7GmHf29yQJSGlFKUaBVLj2gWR0Czn2jsUqQSdX2UKGgGaAloD0MI/TIYI5Ipb0CUhpRSlGgVS6xoFkdAs59xBu4wy3V9lChoBmgJaA9DCMUe2seKrHBAlIaUUpRoFUvCaBZHQLOfesCDEm91fZQoaAZoCWgPQwhl4ICWruNzQJSGlFKUaBVL1GgWR0Czn4z/MnqndX2UKGgGaAloD0MI2T7kLZfzc0CUhpRSlGgVS8FoFkdAs5+QLkS26XV9lChoBmgJaA9DCDyiQnUz9nFAlIaUUpRoFUvMaBZHQLOfniM5wOx1fZQoaAZoCWgPQwiFCaNZWQZxQJSGlFKUaBVLvmgWR0Czn77ORkmQdX2UKGgGaAloD0MIZkrrb8kicUCUhpRSlGgVS8FoFkdAs5/T/YJ3PnV9lChoBmgJaA9DCJ7Q60+i0XFAlIaUUpRoFUuvaBZHQLOf5KKYRd11fZQoaAZoCWgPQwj9aDhl7kdyQJSGlFKUaBVLqGgWR0CzoAybUgB+dX2UKGgGaAloD0MIPgRVoxcvcUCUhpRSlGgVS6BoFkdAs6AScawUxnV9lChoBmgJaA9DCMhcGVQbQW9AlIaUUpRoFUusaBZHQLOgHhE0BOp1fZQoaAZoCWgPQwhKCiyAaRZxQJSGlFKUaBVLrGgWR0CzoC4GMXJpdX2UKGgGaAloD0MIucSRB+KjcUCUhpRSlGgVS8xoFkdAs6A5ZV4oqnV9lChoBmgJaA9DCMuAs5TsQHFAlIaUUpRoFUuiaBZHQLOgPHWz4UN1fZQoaAZoCWgPQwg1CHO7F2VxQJSGlFKUaBVLu2gWR0CzoEyr5qM4dX2UKGgGaAloD0MIdLSqJR07c0CUhpRSlGgVS6hoFkdAs6CWqhlDnnV9lChoBmgJaA9DCG0ANiACgHJAlIaUUpRoFUvYaBZHQLOgnZA6dUd1fZQoaAZoCWgPQwhy3ZTymqByQJSGlFKUaBVLt2gWR0CzoJ2KMvRJdX2UKGgGaAloD0MItJPBUTLIc0CUhpRSlGgVS8hoFkdAs6ChgfEGaHV9lChoBmgJaA9DCPFHUWeuUHJAlIaUUpRoFUvHaBZHQLOg2WiUPhB1fZQoaAZoCWgPQwgtz4O7MztyQJSGlFKUaBVLqGgWR0CzoOQHAymAdX2UKGgGaAloD0MIFhdH5ebDcUCUhpRSlGgVS9hoFkdAs6DrJV81GnV9lChoBmgJaA9DCO0MU1uq0nNAlIaUUpRoFUvcaBZHQLOhBUcn3L51fZQoaAZoCWgPQwgvF/GdWCdzQJSGlFKUaBVLxGgWR0CzoS1CPZIydX2UKGgGaAloD0MIChSxiOGHckCUhpRSlGgVS7loFkdAs6E35zo2XXV9lChoBmgJaA9DCHXlszzPhHFAlIaUUpRoFUuuaBZHQLOhRNvfj0d1fZQoaAZoCWgPQwjJqgg32RNzQJSGlFKUaBVLz2gWR0CzoYRFmWdFdX2UKGgGaAloD0MIjzf5LTrBb0CUhpRSlGgVS6NoFkdAs6GbSb6P83V9lChoBmgJaA9DCMTuO4bHpnFAlIaUUpRoFUu1aBZHQLOhm371qWV1fZQoaAZoCWgPQwgGobyPo4BzQJSGlFKUaBVLymgWR0CzoZyvPkaNdX2UKGgGaAloD0MIJqsi3CSacECUhpRSlGgVS7BoFkdAs6GhZEDyOXV9lChoBmgJaA9DCJ+vWS7b4XBAlIaUUpRoFUvKaBZHQLOh7llbu+h1fZQoaAZoCWgPQwgCnx9GSOtwQJSGlFKUaBVLsWgWR0CzofJEc81XdX2UKGgGaAloD0MI01CjkORyc0CUhpRSlGgVS85oFkdAs6IHu1F6RnV9lChoBmgJaA9DCHZR9MDH43FAlIaUUpRoFUvDaBZHQLOiG2OAAhl1fZQoaAZoCWgPQwgLR5BKMU9zQJSGlFKUaBVL0GgWR0Czoi5RKpT/dX2UKGgGaAloD0MIgjy7fKsscECUhpRSlGgVS6hoFkdAs6JCOIZZS3V9lChoBmgJaA9DCF8JpMRuFHNAlIaUUpRoFUu0aBZHQLOiVDqW1MN1fZQoaAZoCWgPQwg+BitO9etxQJSGlFKUaBVLmWgWR0CzolNWluWKdX2UKGgGaAloD0MIn1kSoOYccUCUhpRSlGgVS6RoFkdAs6Jr99+gDnV9lChoBmgJaA9DCKPlQA91EXJAlIaUUpRoFUvzaBZHQLOieg2Ifr91fZQoaAZoCWgPQwho6J/govJxQJSGlFKUaBVLzWgWR0CzopBQvYe1dX2UKGgGaAloD0MIPglszkF3b0CUhpRSlGgVS7NoFkdAs6K/bj94vHV9lChoBmgJaA9DCO61oPeG5nFAlIaUUpRoFUvAaBZHQLOiyO+IuXh1fZQoaAZoCWgPQwgheHx7V9pyQJSGlFKUaBVLw2gWR0Czos+B6KLsdX2UKGgGaAloD0MItFn1uVoEcECUhpRSlGgVS75oFkdAs6LnQNTcZnV9lChoBmgJaA9DCD9Tr1vEi3JAlIaUUpRoFUu+aBZHQLOi+mR/3Fl1fZQoaAZoCWgPQwi+amXC73tyQJSGlFKUaBVLsWgWR0CzoyQbQ1JldX2UKGgGaAloD0MIoImw4WkDcUCUhpRSlGgVS7doFkdAs6M7yjHn2nV9lChoBmgJaA9DCMstrYYEZ3FAlIaUUpRoFUuraBZHQLOjTPykKu11fZQoaAZoCWgPQwg1YJD0ae5wQJSGlFKUaBVLv2gWR0Czo1JgLJCCdX2UKGgGaAloD0MI4umVsoxackCUhpRSlGgVS8NoFkdAs6NtDOTq0XV9lChoBmgJaA9DCHmUSnhConBAlIaUUpRoFUunaBZHQLOjcDdP+GZ1fZQoaAZoCWgPQwhoCTICqkhyQJSGlFKUaBVLumgWR0Czo5mapgkUdX2UKGgGaAloD0MIweYcPJN6bkCUhpRSlGgVS61oFkdAs6O4oa1kUnV9lChoBmgJaA9DCN/DJcddgHFAlIaUUpRoFUu9aBZHQLOkDHTqjah1fZQoaAZoCWgPQwjt9e6P9ydzQJSGlFKUaBVL2WgWR0CzpA9SZSeidX2UKGgGaAloD0MIVDVB1D31cECUhpRSlGgVS7NoFkdAs6RKekHlfnV9lChoBmgJaA9DCAqjWdk+6XJAlIaUUpRoFUu5aBZHQLOkScQyylh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 768, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:99347fe1381c2c9217406eaedbc6a8585e8a9d45f3e4a4ce07660ffe2a76eef7
|
3 |
+
size 148120
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
@@ -42,13 +42,13 @@
|
|
42 |
"dtype": "int64",
|
43 |
"_np_random": null
|
44 |
},
|
45 |
-
"n_envs":
|
46 |
-
"num_timesteps":
|
47 |
"_total_timesteps": 1000000,
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
@@ -57,34 +57,34 @@
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
-
":serialized:": "
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
64 |
-
":serialized:": "
|
65 |
},
|
66 |
"_last_original_obs": null,
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
-
"_current_progress_remaining": -0.
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
-
":serialized:": "
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
-
"_n_updates":
|
80 |
-
"n_steps":
|
81 |
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
83 |
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
-
"batch_size":
|
87 |
-
"n_epochs":
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f69fc03d4c0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f69fc03d550>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f69fc03d5e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f69fc03d670>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f69fc03d700>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f69fc03d790>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f69fc03d820>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f69fc03d8b0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f69fc03d940>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f69fc03d9d0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f69fc03da60>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f69fc03daf0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f69fc0b0d80>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
|
|
42 |
"dtype": "int64",
|
43 |
"_np_random": null
|
44 |
},
|
45 |
+
"n_envs": 32,
|
46 |
+
"num_timesteps": 1048576,
|
47 |
"_total_timesteps": 1000000,
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1677881368375497082,
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAADNFJjzh4JS6Ujsus+uehDH69pq61LCzMwAAgD8AAIA/Zvu2POqPrz90Uz0/qe4bv0Thnbx1baa9AAAAAAAAAACaWuE8o6lBPSIgqL1LX7W+0cHxOv4Bo7wAAAAAAAAAAF1giD65egQ/w9sfvs4yGL8RM/I+fT5DvgAAAAAAAAAAGvkCvSlwXrpBFR0400kMM1TjUzjIaji3AACAPwAAgD/AO1U+x4bbPr7pjL6+fhq/1PhPPj5rL74AAAAAAAAAAJqfMryU1LE/vhi2vqmLsb4utNA7M+oLOwAAAAAAAAAADbjUveEUSz6GTDQ+Y6/Nvt2UnL3yfQE+AAAAAAAAAACzrN69w/OjP3UXD79fHwy/WSoUvjkynb4AAAAAAAAAAGY2qzw9XXi7tGk4vvCIPL4uZUi9IraEPwAAgD8AAAAAANSlPOR0aD/Nohk9uUJOv2INLD3jSj67AAAAAAAAAAAarfk9gwWbPm73db7mDw6/TZCBPZqbPL4AAAAAAAAAAE1wCT1II7K6kJutPBwYmDwpes26kNmDPQAAgD8AAIA/zRJWva4fszvsrAk+JCSyvkb7nj2My4k9AAAAAAAAgD/mgdM9HF1FPaI3vb68Nr6+hM3nvbtC2rwAAAAAAAAAAM3j1bwUkIC65UTTvW9bMTOwAI86j8FEswAAgD8AAIA/ZgkgvcO9fbqOuCU4IjMhM8M0cjv+pUG3AACAPwAAgD8doGC+JLiLP+JVYL6WFTi/mJCkvpz8ob0AAAAAAAAAAM2NTT7Yev0+9dL0vVA1C7/TQJg+NTEtvgAAAAAAAAAAmpFJOx/V8blBJMs9QLHrsfHSvDuomfezAACAPwAAgD9NeVg9nAbDPoCAULyDHge/79nbPdgm0zwAAAAAAAAAAJriYz0jIGY/jjZlPVCkRL9BAOc9rH7IvAAAAAAAAAAA85NoPnKMvD4TvIi+9ZkNv8YfgD7l2p6+AAAAAAAAAABNqZ29hdbDPAaXlz6sBaS+HY9aPja05T0AAAAAAAAAAGYOXL3Ot7M/iQedvpO3bL7SWq67zHEtvQAAAAAAAAAAZkOZvSPLVD1Ogyc+jFyzvik8Jr1v8xY+AAAAAAAAAADtpwm+RO+LPVYmlj4xwrS+ZcbHO15xfz4AAAAAAAAAAAAyPbxci0S626KPPQ6cYzwH31e7xc5HPQAAgD8AAIA/c77hPXj0wD2CEsG+ZkC9vqhNrL2iJdy9AAAAAAAAAACajbW8gD4APxvtMTzU7hS/hS3QvEcoDz0AAAAAAAAAADMDmDuPbmi6I1cFNU3lbTC4mPW4CyNutAAAgD8AAIA/AMZWvHH/N7uHI4a98zSNPDtcdTwSM3O9AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
|
65 |
},
|
66 |
"_last_original_obs": null,
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.04857599999999995,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIu16aIgCmcECUhpRSlIwBbJRLx4wBdJRHQLOdBmqYJE91fZQoaAZoCWgPQwgSaRt/ollyQJSGlFKUaBVLymgWR0CznSfJFLFodX2UKGgGaAloD0MIQ3IycWsNc0CUhpRSlGgVS8VoFkdAs50+v2Xb/XV9lChoBmgJaA9DCB2rlJ5p1HJAlIaUUpRoFUvNaBZHQLOdR9ETg2t1fZQoaAZoCWgPQwjX+bfL/uBxQJSGlFKUaBVLr2gWR0CznUe5BkZrdX2UKGgGaAloD0MI9phIafb7cUCUhpRSlGgVS79oFkdAs51qkM1CPnV9lChoBmgJaA9DCC43GOqwvXNAlIaUUpRoFUvAaBZHQLOddl8PWhB1fZQoaAZoCWgPQwjtEWqGFE9zQJSGlFKUaBVLv2gWR0CznXs/pt78dX2UKGgGaAloD0MIk+F4PkMQcECUhpRSlGgVS7hoFkdAs5162F36h3V9lChoBmgJaA9DCNSdJ54zynNAlIaUUpRoFUvXaBZHQLOdlttALRd1fZQoaAZoCWgPQwge+YOBJ+RyQJSGlFKUaBVLx2gWR0CznaWsmv4edX2UKGgGaAloD0MIborHRXXOcUCUhpRSlGgVS8ZoFkdAs52xc7hegXV9lChoBmgJaA9DCPXabKyEeXNAlIaUUpRoFUvPaBZHQLOdyHSWqtJ1fZQoaAZoCWgPQwgP8Q9b+tZwQJSGlFKUaBVLqmgWR0CznfOz+m3wdX2UKGgGaAloD0MIfjUHCKbJcUCUhpRSlGgVS8hoFkdAs54DuXu3MXV9lChoBmgJaA9DCAQCnUmbx3JAlIaUUpRoFUvUaBZHQLOeDr0aqCJ1fZQoaAZoCWgPQwhzu5f75ORBQJSGlFKUaBVLXGgWR0CznjRcVxjsdX2UKGgGaAloD0MIr9LddTZycECUhpRSlGgVS7hoFkdAs55Eaya/h3V9lChoBmgJaA9DCEj6tIq+xXJAlIaUUpRoFUu3aBZHQLOeYPBBRht1fZQoaAZoCWgPQwhOuFfm7YZzQJSGlFKUaBVLzmgWR0Cznm1XiiqRdX2UKGgGaAloD0MI8icqGxZlcUCUhpRSlGgVS7toFkdAs55zYnOSn3V9lChoBmgJaA9DCMWu7e3WDHFAlIaUUpRoFUuuaBZHQLOedCFK02N1fZQoaAZoCWgPQwiRgNHlDU1xQJSGlFKUaBVLomgWR0Cznn978ejmdX2UKGgGaAloD0MIdzHNdK+QckCUhpRSlGgVS6FoFkdAs56I8nuy/3V9lChoBmgJaA9DCEYm4NdIWXFAlIaUUpRoFUutaBZHQLOejCUX5311fZQoaAZoCWgPQwgqAwe09D5zQJSGlFKUaBVL02gWR0CznpdXgccVdX2UKGgGaAloD0MIXfxtTxD6ckCUhpRSlGgVS81oFkdAs56gQsf7rXV9lChoBmgJaA9DCKhSswfaDnBAlIaUUpRoFUu2aBZHQLOeomRvFWJ1fZQoaAZoCWgPQwhaY9AJIRJyQJSGlFKUaBVLmmgWR0Cznrai0v4/dX2UKGgGaAloD0MI0SLb+T6MckCUhpRSlGgVS7toFkdAs56zkRzzVnV9lChoBmgJaA9DCA73kVsTa3FAlIaUUpRoFUvKaBZHQLOe0aef7Jp1fZQoaAZoCWgPQwjPu7GgMKJzQJSGlFKUaBVL3WgWR0CznvXbmEGrdX2UKGgGaAloD0MIIH2TpkFMc0CUhpRSlGgVS9NoFkdAs58EJ6Y3N3V9lChoBmgJaA9DCIgvE0WInXBAlIaUUpRoFUu0aBZHQLOfE/echDB1fZQoaAZoCWgPQwhTXFX2nfJzQJSGlFKUaBVL32gWR0CznxdLteD4dX2UKGgGaAloD0MIpz0l50Q5ckCUhpRSlGgVS8BoFkdAs58wBcRlH3V9lChoBmgJaA9DCPxwkBAlxHNAlIaUUpRoFUvhaBZHQLOfN6xgRbt1fZQoaAZoCWgPQwgNiuYB7FdzQJSGlFKUaBVLwmgWR0Czn1gk5ZKWdX2UKGgGaAloD0MILlkV4SaOckCUhpRSlGgVS8BoFkdAs59jfdhy83V9lChoBmgJaA9DCMx5xr5kZXNAlIaUUpRoFUvAaBZHQLOfYxR2r4p1fZQoaAZoCWgPQwgt7GmHf29yQJSGlFKUaBVLj2gWR0Czn2jsUqQSdX2UKGgGaAloD0MI/TIYI5Ipb0CUhpRSlGgVS6xoFkdAs59xBu4wy3V9lChoBmgJaA9DCMUe2seKrHBAlIaUUpRoFUvCaBZHQLOfesCDEm91fZQoaAZoCWgPQwhl4ICWruNzQJSGlFKUaBVL1GgWR0Czn4z/MnqndX2UKGgGaAloD0MI2T7kLZfzc0CUhpRSlGgVS8FoFkdAs5+QLkS26XV9lChoBmgJaA9DCDyiQnUz9nFAlIaUUpRoFUvMaBZHQLOfniM5wOx1fZQoaAZoCWgPQwiFCaNZWQZxQJSGlFKUaBVLvmgWR0Czn77ORkmQdX2UKGgGaAloD0MIZkrrb8kicUCUhpRSlGgVS8FoFkdAs5/T/YJ3PnV9lChoBmgJaA9DCJ7Q60+i0XFAlIaUUpRoFUuvaBZHQLOf5KKYRd11fZQoaAZoCWgPQwj9aDhl7kdyQJSGlFKUaBVLqGgWR0CzoAybUgB+dX2UKGgGaAloD0MIPgRVoxcvcUCUhpRSlGgVS6BoFkdAs6AScawUxnV9lChoBmgJaA9DCMhcGVQbQW9AlIaUUpRoFUusaBZHQLOgHhE0BOp1fZQoaAZoCWgPQwhKCiyAaRZxQJSGlFKUaBVLrGgWR0CzoC4GMXJpdX2UKGgGaAloD0MIucSRB+KjcUCUhpRSlGgVS8xoFkdAs6A5ZV4oqnV9lChoBmgJaA9DCMuAs5TsQHFAlIaUUpRoFUuiaBZHQLOgPHWz4UN1fZQoaAZoCWgPQwg1CHO7F2VxQJSGlFKUaBVLu2gWR0CzoEyr5qM4dX2UKGgGaAloD0MIdLSqJR07c0CUhpRSlGgVS6hoFkdAs6CWqhlDnnV9lChoBmgJaA9DCG0ANiACgHJAlIaUUpRoFUvYaBZHQLOgnZA6dUd1fZQoaAZoCWgPQwhy3ZTymqByQJSGlFKUaBVLt2gWR0CzoJ2KMvRJdX2UKGgGaAloD0MItJPBUTLIc0CUhpRSlGgVS8hoFkdAs6ChgfEGaHV9lChoBmgJaA9DCPFHUWeuUHJAlIaUUpRoFUvHaBZHQLOg2WiUPhB1fZQoaAZoCWgPQwgtz4O7MztyQJSGlFKUaBVLqGgWR0CzoOQHAymAdX2UKGgGaAloD0MIFhdH5ebDcUCUhpRSlGgVS9hoFkdAs6DrJV81GnV9lChoBmgJaA9DCO0MU1uq0nNAlIaUUpRoFUvcaBZHQLOhBUcn3L51fZQoaAZoCWgPQwgvF/GdWCdzQJSGlFKUaBVLxGgWR0CzoS1CPZIydX2UKGgGaAloD0MIChSxiOGHckCUhpRSlGgVS7loFkdAs6E35zo2XXV9lChoBmgJaA9DCHXlszzPhHFAlIaUUpRoFUuuaBZHQLOhRNvfj0d1fZQoaAZoCWgPQwjJqgg32RNzQJSGlFKUaBVLz2gWR0CzoYRFmWdFdX2UKGgGaAloD0MIjzf5LTrBb0CUhpRSlGgVS6NoFkdAs6GbSb6P83V9lChoBmgJaA9DCMTuO4bHpnFAlIaUUpRoFUu1aBZHQLOhm371qWV1fZQoaAZoCWgPQwgGobyPo4BzQJSGlFKUaBVLymgWR0CzoZyvPkaNdX2UKGgGaAloD0MIJqsi3CSacECUhpRSlGgVS7BoFkdAs6GhZEDyOXV9lChoBmgJaA9DCJ+vWS7b4XBAlIaUUpRoFUvKaBZHQLOh7llbu+h1fZQoaAZoCWgPQwgCnx9GSOtwQJSGlFKUaBVLsWgWR0CzofJEc81XdX2UKGgGaAloD0MI01CjkORyc0CUhpRSlGgVS85oFkdAs6IHu1F6RnV9lChoBmgJaA9DCHZR9MDH43FAlIaUUpRoFUvDaBZHQLOiG2OAAhl1fZQoaAZoCWgPQwgLR5BKMU9zQJSGlFKUaBVL0GgWR0Czoi5RKpT/dX2UKGgGaAloD0MIgjy7fKsscECUhpRSlGgVS6hoFkdAs6JCOIZZS3V9lChoBmgJaA9DCF8JpMRuFHNAlIaUUpRoFUu0aBZHQLOiVDqW1MN1fZQoaAZoCWgPQwg+BitO9etxQJSGlFKUaBVLmWgWR0CzolNWluWKdX2UKGgGaAloD0MIn1kSoOYccUCUhpRSlGgVS6RoFkdAs6Jr99+gDnV9lChoBmgJaA9DCKPlQA91EXJAlIaUUpRoFUvzaBZHQLOieg2Ifr91fZQoaAZoCWgPQwho6J/govJxQJSGlFKUaBVLzWgWR0CzopBQvYe1dX2UKGgGaAloD0MIPglszkF3b0CUhpRSlGgVS7NoFkdAs6K/bj94vHV9lChoBmgJaA9DCO61oPeG5nFAlIaUUpRoFUvAaBZHQLOiyO+IuXh1fZQoaAZoCWgPQwgheHx7V9pyQJSGlFKUaBVLw2gWR0Czos+B6KLsdX2UKGgGaAloD0MItFn1uVoEcECUhpRSlGgVS75oFkdAs6LnQNTcZnV9lChoBmgJaA9DCD9Tr1vEi3JAlIaUUpRoFUu+aBZHQLOi+mR/3Fl1fZQoaAZoCWgPQwi+amXC73tyQJSGlFKUaBVLsWgWR0CzoyQbQ1JldX2UKGgGaAloD0MIoImw4WkDcUCUhpRSlGgVS7doFkdAs6M7yjHn2nV9lChoBmgJaA9DCMstrYYEZ3FAlIaUUpRoFUuraBZHQLOjTPykKu11fZQoaAZoCWgPQwg1YJD0ae5wQJSGlFKUaBVLv2gWR0Czo1JgLJCCdX2UKGgGaAloD0MI4umVsoxackCUhpRSlGgVS8NoFkdAs6NtDOTq0XV9lChoBmgJaA9DCHmUSnhConBAlIaUUpRoFUunaBZHQLOjcDdP+GZ1fZQoaAZoCWgPQwhoCTICqkhyQJSGlFKUaBVLumgWR0Czo5mapgkUdX2UKGgGaAloD0MIweYcPJN6bkCUhpRSlGgVS61oFkdAs6O4oa1kUnV9lChoBmgJaA9DCN/DJcddgHFAlIaUUpRoFUu9aBZHQLOkDHTqjah1fZQoaAZoCWgPQwjt9e6P9ydzQJSGlFKUaBVL2WgWR0CzpA9SZSeidX2UKGgGaAloD0MIVDVB1D31cECUhpRSlGgVS7NoFkdAs6RKekHlfnV9lChoBmgJaA9DCAqjWdk+6XJAlIaUUpRoFUu5aBZHQLOkScQyylh1ZS4="
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
+
"_n_updates": 768,
|
80 |
+
"n_steps": 2048,
|
81 |
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
83 |
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 256,
|
87 |
+
"n_epochs": 8,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a57cedd7e547e582b669f11acf3f4a9a1c094a045f5638e9959e62418b0eaeb9
|
3 |
+
size 88057
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43393
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1024bcd42cbd5e76b7aec624c80c50a4480ceaa8c3332eedd2e750d2d8acd3e3
|
3 |
size 43393
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 289.96188468390693, "std_reward": 22.587856484610178, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-03T22:24:35.075922"}
|