dmlls commited on
Commit
0a37e81
1 Parent(s): 1d1c608

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -4
README.md CHANGED
@@ -778,7 +778,11 @@ pip install -U sentence-transformers
778
  Then you can use the model like this:
779
  ```python
780
  from sentence_transformers import SentenceTransformer
781
- sentences = ["This is an example sentence", "Each sentence is converted"]
 
 
 
 
782
 
783
  model = SentenceTransformer('dmlls/all-mpnet-base-v2-negation')
784
  embeddings = model.encode(sentences)
@@ -793,7 +797,7 @@ from transformers import AutoTokenizer, AutoModel
793
  import torch
794
  import torch.nn.functional as F
795
 
796
- #Mean Pooling - Take attention mask into account for correct averaging
797
  def mean_pooling(model_output, attention_mask):
798
  token_embeddings = model_output[0] #First element of model_output contains all token embeddings
799
  input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
@@ -801,7 +805,10 @@ def mean_pooling(model_output, attention_mask):
801
 
802
 
803
  # Sentences we want sentence embeddings for
804
- sentences = ['This is an example sentence', 'Each sentence is converted']
 
 
 
805
 
806
  # Load model from HuggingFace Hub
807
  tokenizer = AutoTokenizer.from_pretrained('dmlls/all-mpnet-base-v2-negation')
@@ -820,7 +827,6 @@ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']
820
  # Normalize embeddings
821
  sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
822
 
823
- print("Sentence embeddings:")
824
  print(sentence_embeddings)
825
  ```
826
 
 
778
  Then you can use the model like this:
779
  ```python
780
  from sentence_transformers import SentenceTransformer
781
+
782
+ sentences = [
783
+ "I like rainy days because they make me feel relaxed.",
784
+ "I don't like rainy days because they don't make me feel relaxed."
785
+ ]
786
 
787
  model = SentenceTransformer('dmlls/all-mpnet-base-v2-negation')
788
  embeddings = model.encode(sentences)
 
797
  import torch
798
  import torch.nn.functional as F
799
 
800
+ # Mean Pooling - Take attention mask into account for correct averaging
801
  def mean_pooling(model_output, attention_mask):
802
  token_embeddings = model_output[0] #First element of model_output contains all token embeddings
803
  input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
 
805
 
806
 
807
  # Sentences we want sentence embeddings for
808
+ sentences = [
809
+ "I like rainy days because they make me feel relaxed.",
810
+ "I don't like rainy days because they don't make me feel relaxed."
811
+ ]
812
 
813
  # Load model from HuggingFace Hub
814
  tokenizer = AutoTokenizer.from_pretrained('dmlls/all-mpnet-base-v2-negation')
 
827
  # Normalize embeddings
828
  sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
829
 
 
830
  print(sentence_embeddings)
831
  ```
832