--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity language: en license: apache-2.0 datasets: - s2orc - flax-sentence-embeddings/stackexchange_xml - ms_marco - gooaq - yahoo_answers_topics - code_search_net - search_qa - eli5 - snli - multi_nli - wikihow - natural_questions - trivia_qa - embedding-data/sentence-compression - embedding-data/flickr30k-captions - embedding-data/altlex - embedding-data/simple-wiki - embedding-data/QQP - embedding-data/SPECTER - embedding-data/PAQ_pairs - embedding-data/WikiAnswers - tum-nlp/cannot-dataset model-index: - name: all-mpnet-base-v2-negation results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 72.6268656716418 - type: ap value: 36.40585820220466 - type: f1 value: 67.06383995428979 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 85.11834999999999 - type: ap value: 79.72843246428603 - type: f1 value: 85.08938287851875 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 37.788000000000004 - type: f1 value: 37.40475118737949 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 45.73138953773995 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 39.13609863309245 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 65.56639026991134 - type: mrr value: 77.8122938926263 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 72.27098152643569 - type: cos_sim_spearman value: 71.13475338373253 - type: euclidean_pearson value: 70.48545151074218 - type: euclidean_spearman value: 69.49917394727082 - type: manhattan_pearson value: 69.2653740752147 - type: manhattan_spearman value: 68.59192435931085 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 84.7012987012987 - type: f1 value: 84.61766470772943 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 37.61314886948818 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 34.496442588205205 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 45.63 - type: f1 value: 40.24119129248194 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 74.73479999999999 - type: ap value: 68.80435332319863 - type: f1 value: 74.66014345440416 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 93.06429548563612 - type: f1 value: 92.91686969560733 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 78.19197446420428 - type: f1 value: 61.50020940946492 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 73.86684599865502 - type: f1 value: 72.11245795864379 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 77.53866845998655 - type: f1 value: 77.51746806908895 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 33.66744884855605 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 31.951900966550262 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 29.34485636178124 - type: mrr value: 30.118035109577022 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 47.14306531904168 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 51.59878183893005 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 78.5530506834234 - type: cos_sim_spearman value: 77.45787185404667 - type: euclidean_pearson value: 76.37727601604011 - type: euclidean_spearman value: 77.14250754925013 - type: manhattan_pearson value: 75.85855462882735 - type: manhattan_spearman value: 76.6223895689777 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 83.1019526956277 - type: cos_sim_spearman value: 72.98362332123834 - type: euclidean_pearson value: 78.42992808997602 - type: euclidean_spearman value: 70.79569301491145 - type: manhattan_pearson value: 77.96413528436207 - type: manhattan_spearman value: 70.34707852104586 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 85.09200805966644 - type: cos_sim_spearman value: 85.52497834636847 - type: euclidean_pearson value: 84.20407512505086 - type: euclidean_spearman value: 85.35640946044332 - type: manhattan_pearson value: 83.79425758102826 - type: manhattan_spearman value: 84.9531731481683 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 82.43419245577238 - type: cos_sim_spearman value: 79.87215923164575 - type: euclidean_pearson value: 80.99628882719712 - type: euclidean_spearman value: 79.2671186335978 - type: manhattan_pearson value: 80.47076166661054 - type: manhattan_spearman value: 78.82329686631051 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 84.67294508915346 - type: cos_sim_spearman value: 85.34528695616378 - type: euclidean_pearson value: 83.65270617275111 - type: euclidean_spearman value: 84.64456096952591 - type: manhattan_pearson value: 83.26416114783083 - type: manhattan_spearman value: 84.26944094512996 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 80.70172607906416 - type: cos_sim_spearman value: 81.96031310316046 - type: euclidean_pearson value: 82.34820192315314 - type: euclidean_spearman value: 82.72576940549405 - type: manhattan_pearson value: 81.93093910116202 - type: manhattan_spearman value: 82.25431799152639 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 90.43640731744911 - type: cos_sim_spearman value: 90.16343998541602 - type: euclidean_pearson value: 89.49834342254633 - type: euclidean_spearman value: 90.17304989919288 - type: manhattan_pearson value: 89.32424382015218 - type: manhattan_spearman value: 89.91884845996768 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 62.06205206393254 - type: cos_sim_spearman value: 60.920792876665885 - type: euclidean_pearson value: 60.49188637403393 - type: euclidean_spearman value: 60.73500415357452 - type: manhattan_pearson value: 59.94692152491976 - type: manhattan_spearman value: 60.215426858338994 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 84.78948820087687 - type: cos_sim_spearman value: 84.64531509697663 - type: euclidean_pearson value: 84.77264321816324 - type: euclidean_spearman value: 84.67485410196043 - type: manhattan_pearson value: 84.43100272264775 - type: manhattan_spearman value: 84.29254033404217 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 88.39411601972704 - type: mrr value: 96.49192583016112 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.55445544554455 - type: cos_sim_ap value: 84.82462858434408 - type: cos_sim_f1 value: 76.11464968152866 - type: cos_sim_precision value: 81.10859728506787 - type: cos_sim_recall value: 71.7 - type: dot_accuracy value: 99.48613861386139 - type: dot_ap value: 80.97278220281665 - type: dot_f1 value: 72.2914669223394 - type: dot_precision value: 69.42909760589319 - type: dot_recall value: 75.4 - type: euclidean_accuracy value: 99.56138613861386 - type: euclidean_ap value: 85.21566333946467 - type: euclidean_f1 value: 76.60239708181345 - type: euclidean_precision value: 79.97823721436343 - type: euclidean_recall value: 73.5 - type: manhattan_accuracy value: 99.55148514851486 - type: manhattan_ap value: 84.49960192851891 - type: manhattan_f1 value: 75.9681697612732 - type: manhattan_precision value: 80.90395480225989 - type: manhattan_recall value: 71.6 - type: max_accuracy value: 99.56138613861386 - type: max_ap value: 85.21566333946467 - type: max_f1 value: 76.60239708181345 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 49.33929838947165 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 31.523973661953686 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 52.22408767861519 - type: mrr value: 53.16279921059333 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 28.128173244098726 - type: cos_sim_spearman value: 30.149225143523662 - type: dot_pearson value: 24.322914168643386 - type: dot_spearman value: 26.38194545372431 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 67.6684 - type: ap value: 12.681984793717413 - type: f1 value: 51.97637585601529 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 58.44086021505377 - type: f1 value: 58.68058329615692 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 44.226944341054015 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 86.87488823985218 - type: cos_sim_ap value: 76.85283892335002 - type: cos_sim_f1 value: 70.42042042042041 - type: cos_sim_precision value: 66.96811042360781 - type: cos_sim_recall value: 74.24802110817942 - type: dot_accuracy value: 84.85426476724086 - type: dot_ap value: 70.77036812650887 - type: dot_f1 value: 66.4901577069184 - type: dot_precision value: 58.97488258117215 - type: dot_recall value: 76.2005277044855 - type: euclidean_accuracy value: 86.95833581689217 - type: euclidean_ap value: 77.05903224969623 - type: euclidean_f1 value: 70.75323419175432 - type: euclidean_precision value: 65.2979245704084 - type: euclidean_recall value: 77.20316622691293 - type: manhattan_accuracy value: 86.88084878106932 - type: manhattan_ap value: 76.95056209047733 - type: manhattan_f1 value: 70.61542203843348 - type: manhattan_precision value: 65.50090252707581 - type: manhattan_recall value: 76.59630606860158 - type: max_accuracy value: 86.95833581689217 - type: max_ap value: 77.05903224969623 - type: max_f1 value: 70.75323419175432 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 88.43870066363954 - type: cos_sim_ap value: 84.77197321507954 - type: cos_sim_f1 value: 76.91440595175472 - type: cos_sim_precision value: 75.11375311903713 - type: cos_sim_recall value: 78.80351093316908 - type: dot_accuracy value: 87.60624054022587 - type: dot_ap value: 83.16574114504616 - type: dot_f1 value: 75.5050226294293 - type: dot_precision value: 72.30953555571217 - type: dot_recall value: 78.99599630428088 - type: euclidean_accuracy value: 88.2951061435169 - type: euclidean_ap value: 84.28559058741602 - type: euclidean_f1 value: 76.7921146953405 - type: euclidean_precision value: 74.54334589736156 - type: euclidean_recall value: 79.1807822605482 - type: manhattan_accuracy value: 88.23883261536074 - type: manhattan_ap value: 84.20593815258039 - type: manhattan_f1 value: 76.74366281685916 - type: manhattan_precision value: 74.80263157894737 - type: manhattan_recall value: 78.78811210348013 - type: max_accuracy value: 88.43870066363954 - type: max_ap value: 84.77197321507954 - type: max_f1 value: 76.91440595175472 --- # all-mpnet-base-v2-negation **This is a fine-tuned [sentence-transformers](https://www.SBERT.net) model to perform better on negated pairs of sentences.** It maps sentences and paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = [ "I like rainy days because they make me feel relaxed.", "I don't like rainy days because they don't make me feel relaxed." ] model = SentenceTransformer('dmlls/all-mpnet-base-v2-negation') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch import torch.nn.functional as F # Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = [ "I like rainy days because they make me feel relaxed.", "I don't like rainy days because they don't make me feel relaxed." ] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('dmlls/all-mpnet-base-v2-negation') model = AutoModel.from_pretrained('dmlls/all-mpnet-base-v2-negation') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) # Normalize embeddings sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1) print(sentence_embeddings) ``` ------ ## Background This model was finetuned within the context of the [*This is not correct! Negation-aware Evaluation of Language Generation Systems*](https://arxiv.org/abs/2307.13989) paper. ## Intended uses Our model is intended to be used as a sentence and short paragraph encoder, performing well (i.e., reporting lower similarity scores) on negated pairs of sentences when compared to its base model. Given an input text, it outputs a vector which captures the semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks. By default, input text longer than 384 word pieces is truncated. ## Training procedure ### Pre-training We used [`sentence-transformers/all-mpnet-base-v2`](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) as base model. ### Fine-tuning We fine-tuned the model on the [CANNOT dataset](https://huggingface.co/datasets/tum-nlp/cannot-dataset) using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. #### Hyper parameters We followed an analogous approach to [how other Sentence Transformers were trained](https://github.com/UKPLab/sentence-transformers/blob/3e1929fddef16df94f8bc6e3b10598a98f46e62d/examples/training/nli/training_nli_v2.py). We took the first 90% of samples from the CANNOT dataset as the training split. We used a batch size of 64 and trained for 1 epoch.