system HF staff commited on
Commit
cfd0043
1 Parent(s): 80db9b1

Commit From AutoTrain

Browse files
.gitattributes CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
37
+ *.tar.gz filter=lfs diff=lfs merge=lfs -text
38
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - autotrain
4
+ - text-classification
5
+ language:
6
+ - unk
7
+ widget:
8
+ - text: "I love AutoTrain"
9
+ datasets:
10
+ - dmytrobaida/autotrain-data-ukrainian-telegram-sentiment-analysis
11
+ co2_eq_emissions:
12
+ emissions: 0.10582404396425517
13
+ ---
14
+
15
+ # Model Trained Using AutoTrain
16
+
17
+ - Problem type: Binary Classification
18
+ - Model ID: 70044138081
19
+ - CO2 Emissions (in grams): 0.1058
20
+
21
+ ## Validation Metrics
22
+
23
+ - Loss: 0.461
24
+ - Accuracy: 0.817
25
+ - Precision: 0.824
26
+ - Recall: 0.955
27
+ - AUC: 0.772
28
+ - F1: 0.885
29
+
30
+ ## Usage
31
+
32
+ You can use cURL to access this model:
33
+
34
+ ```
35
+ $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/dmytrobaida/autotrain-ukrainian-telegram-sentiment-analysis-70044138081
36
+ ```
37
+
38
+ Or Python API:
39
+
40
+ ```
41
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
42
+
43
+ model = AutoModelForSequenceClassification.from_pretrained("dmytrobaida/autotrain-ukrainian-telegram-sentiment-analysis-70044138081", use_auth_token=True)
44
+
45
+ tokenizer = AutoTokenizer.from_pretrained("dmytrobaida/autotrain-ukrainian-telegram-sentiment-analysis-70044138081", use_auth_token=True)
46
+
47
+ inputs = tokenizer("I love AutoTrain", return_tensors="pt")
48
+
49
+ outputs = model(**inputs)
50
+ ```
config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "AutoTrain",
3
+ "_num_labels": 2,
4
+ "activation": "gelu",
5
+ "architectures": [
6
+ "DistilBertForSequenceClassification"
7
+ ],
8
+ "attention_dropout": 0.1,
9
+ "dim": 768,
10
+ "dropout": 0.1,
11
+ "hidden_dim": 3072,
12
+ "id2label": {
13
+ "0": "0",
14
+ "1": "1"
15
+ },
16
+ "initializer_range": 0.02,
17
+ "label2id": {
18
+ "0": 0,
19
+ "1": 1
20
+ },
21
+ "max_length": 64,
22
+ "max_position_embeddings": 512,
23
+ "model_type": "distilbert",
24
+ "n_heads": 12,
25
+ "n_layers": 6,
26
+ "pad_token_id": 0,
27
+ "padding": "max_length",
28
+ "problem_type": "single_label_classification",
29
+ "qa_dropout": 0.1,
30
+ "seq_classif_dropout": 0.2,
31
+ "sinusoidal_pos_embds": false,
32
+ "tie_weights_": true,
33
+ "torch_dtype": "float32",
34
+ "transformers_version": "4.29.2",
35
+ "vocab_size": 30522
36
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c2d1be161e725a6c21aa728e63b7613f59d64b0b5c69bed29e9c3e3b088c159
3
+ size 267832560
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56ed7eb55b9e12c3ddaad266973e8ddcdc912cdcb72591ce8474a1fd125c255d
3
+ size 267855533
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41b9d12a4c559e4098f30173bc0f76d092c43d7b1f873e7027da45a256f30f87
3
+ size 711659
tokenizer_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "clean_up_tokenization_spaces": true,
3
+ "cls_token": "[CLS]",
4
+ "do_lower_case": true,
5
+ "mask_token": "[MASK]",
6
+ "model_max_length": 512,
7
+ "pad_token": "[PAD]",
8
+ "sep_token": "[SEP]",
9
+ "strip_accents": null,
10
+ "tokenize_chinese_chars": true,
11
+ "tokenizer_class": "DistilBertTokenizer",
12
+ "unk_token": "[UNK]"
13
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff