dn-gh commited on
Commit
e8014e8
1 Parent(s): 2f1c099

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.53 +/- 1.06
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f83145890f15e16c4706e1fa449d72fa7a52717ec4451ca7d0c2e40dce998035
3
+ size 108011
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7faeb9571040>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7faeb9568ae0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1675604499214637415,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAUInePk+9fDxAbBU/UInePk+9fDxAbBU/UInePk+9fDxAbBU/UInePk+9fDxAbBU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAM7N+P4Nl2L7rBsc/Mr3Bv7HARb4Ff5Q+zXi+v716m7/YGIe/hCMCv60wSD4ep8Q/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABQid4+T718PEBsFT/BE4m8kBY3OzXuurxQid4+T718PEBsFT/BE4m8kBY3OzXuurxQid4+T718PEBsFT/BE4m8kBY3OzXuurxQid4+T718PEBsFT/BE4m8kBY3OzXuuryUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.43464136 0.01542599 0.583683 ]\n [0.43464136 0.01542599 0.583683 ]\n [0.43464136 0.01542599 0.583683 ]\n [0.43464136 0.01542599 0.583683 ]]",
60
+ "desired_goal": "[[ 0.99492186 -0.42264947 1.5548986 ]\n [-1.5135863 -0.19311787 0.29003158]\n [-1.4880615 -1.2146832 -1.0554457 ]\n [-0.5083544 0.19549818 1.53635 ]]",
61
+ "observation": "[[ 0.43464136 0.01542599 0.583683 -0.01673305 0.0027937 -0.02281866]\n [ 0.43464136 0.01542599 0.583683 -0.01673305 0.0027937 -0.02281866]\n [ 0.43464136 0.01542599 0.583683 -0.01673305 0.0027937 -0.02281866]\n [ 0.43464136 0.01542599 0.583683 -0.01673305 0.0027937 -0.02281866]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAR8+lvRxEsj3aQV8+mc22PFMM/z0mVog+rw6vPS+/zj3cKWo+1tTjPNiJFz4iBoE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.08096176 0.08704397 0.21802464]\n [ 0.02231483 0.12453523 0.26628226]\n [ 0.08547723 0.10095059 0.2286753 ]\n [ 0.02781145 0.14798677 0.2519999 ]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQ+bKoNrABMCUhpRSlIwBbJRLMowBdJRHQKP0sCgbp/x1fZQoaAZoCWgPQwiGx34WS9H5v5SGlFKUaBVLMmgWR0Cj9G1rhzeXdX2UKGgGaAloD0MIwHgGDf2zAcCUhpRSlGgVSzJoFkdAo/Qqj1wo9nV9lChoBmgJaA9DCEMewY2UjQzAlIaUUpRoFUsyaBZHQKPz7ALy+Yd1fZQoaAZoCWgPQwi/tn76z3oEwJSGlFKUaBVLMmgWR0Cj9Z3xnWaudX2UKGgGaAloD0MIYD3uW63jEcCUhpRSlGgVSzJoFkdAo/Va3solU3V9lChoBmgJaA9DCBy2Lcps0ATAlIaUUpRoFUsyaBZHQKP1GDbrTph1fZQoaAZoCWgPQwjEeTiB6TT+v5SGlFKUaBVLMmgWR0Cj9NneJpFkdX2UKGgGaAloD0MI/n3GhQPBAMCUhpRSlGgVSzJoFkdAo/ai6Ymb9nV9lChoBmgJaA9DCHDtRElIxAHAlIaUUpRoFUsyaBZHQKP2YGqPwNN1fZQoaAZoCWgPQwiaYDjXMCMCwJSGlFKUaBVLMmgWR0Cj9h2rn1WbdX2UKGgGaAloD0MI1xNdF36AEsCUhpRSlGgVSzJoFkdAo/XfNu+AVnV9lChoBmgJaA9DCOjewyXHXQbAlIaUUpRoFUsyaBZHQKP3liPyTZB1fZQoaAZoCWgPQwhHHogs0hQYwJSGlFKUaBVLMmgWR0Cj91MDW9UTdX2UKGgGaAloD0MImgXaHVKM/b+UhpRSlGgVSzJoFkdAo/cQhOgxrXV9lChoBmgJaA9DCL4Ts14M5QHAlIaUUpRoFUsyaBZHQKP20eBg/kh1fZQoaAZoCWgPQwjhzoWRXhT/v5SGlFKUaBVLMmgWR0Cj+KB9kSVXdX2UKGgGaAloD0MIgSTs20lEBcCUhpRSlGgVSzJoFkdAo/hdhAnlXHV9lChoBmgJaA9DCDqvsUtUjwPAlIaUUpRoFUsyaBZHQKP4GrHU+cJ1fZQoaAZoCWgPQwiKBFPNrIUCwJSGlFKUaBVLMmgWR0Cj99wQ+UyIdX2UKGgGaAloD0MIz8DIy5rY/b+UhpRSlGgVSzJoFkdAo/mP/kvK2nV9lChoBmgJaA9DCOXwSScSDALAlIaUUpRoFUsyaBZHQKP5TN0vGqB1fZQoaAZoCWgPQwiBP/z892AJwJSGlFKUaBVLMmgWR0Cj+Qn7gsK9dX2UKGgGaAloD0MIH9eGinH+A8CUhpRSlGgVSzJoFkdAo/jLYRNAT3V9lChoBmgJaA9DCLr4254gMQDAlIaUUpRoFUsyaBZHQKP6mafjCHh1fZQoaAZoCWgPQwj/PA0YJD37v5SGlFKUaBVLMmgWR0Cj+la7VawEdX2UKGgGaAloD0MIEaj+QSSjAcCUhpRSlGgVSzJoFkdAo/oUSmIj4nV9lChoBmgJaA9DCB/zAYHOhADAlIaUUpRoFUsyaBZHQKP51gQ6IWR1fZQoaAZoCWgPQwjjHHV0XE0DwJSGlFKUaBVLMmgWR0Cj+4qgyuZDdX2UKGgGaAloD0MIOzjYmxgyCsCUhpRSlGgVSzJoFkdAo/tHko4MnnV9lChoBmgJaA9DCIS9iSE52QTAlIaUUpRoFUsyaBZHQKP7BNqxkd51fZQoaAZoCWgPQwjpLLMIxVYFwJSGlFKUaBVLMmgWR0Cj+sZX2dupdX2UKGgGaAloD0MIWhKgppat/r+UhpRSlGgVSzJoFkdAo/xqfjCHh3V9lChoBmgJaA9DCIuoiT4fpf2/lIaUUpRoFUsyaBZHQKP8J4L1EmZ1fZQoaAZoCWgPQwgJNq5/12f/v5SGlFKUaBVLMmgWR0Cj++TaK1ohdX2UKGgGaAloD0MIbCIzF7g8BMCUhpRSlGgVSzJoFkdAo/umTX8O1HV9lChoBmgJaA9DCEQ0uoPYOQnAlIaUUpRoFUsyaBZHQKP9YVopQUJ1fZQoaAZoCWgPQwjUCz7NyQv0v5SGlFKUaBVLMmgWR0Cj/R5Zr56/dX2UKGgGaAloD0MIKH/3jhqT/r+UhpRSlGgVSzJoFkdAo/zbkU9IPXV9lChoBmgJaA9DCIJvmj47IAPAlIaUUpRoFUsyaBZHQKP8nQrMC911fZQoaAZoCWgPQwhiZTTyecX0v5SGlFKUaBVLMmgWR0Cj/lACOmzjdX2UKGgGaAloD0MIml/NAYL5CMCUhpRSlGgVSzJoFkdAo/4NCzC1qnV9lChoBmgJaA9DCDdUjPM3AQbAlIaUUpRoFUsyaBZHQKP9ymUnogV1fZQoaAZoCWgPQwhyNEdWfpn3v5SGlFKUaBVLMmgWR0Cj/YvEKmbcdX2UKGgGaAloD0MIcAfqlEcXBMCUhpRSlGgVSzJoFkdAo/84L1EmY3V9lChoBmgJaA9DCMecZ+xLZhDAlIaUUpRoFUsyaBZHQKP+9RrJr+J1fZQoaAZoCWgPQwjizK/mAMH6v5SGlFKUaBVLMmgWR0Cj/rJvYODrdX2UKGgGaAloD0MIXtkFg2vuBMCUhpRSlGgVSzJoFkdAo/5z8FY+0XV9lChoBmgJaA9DCDEnaJPDJ/G/lIaUUpRoFUsyaBZHQKQADt1IRRN1fZQoaAZoCWgPQwiuZp3xfTH5v5SGlFKUaBVLMmgWR0Cj/8u/k/8mdX2UKGgGaAloD0MI1ULJ5NRO97+UhpRSlGgVSzJoFkdAo/+I/Z/Tb3V9lChoBmgJaA9DCKOx9ne2R/e/lIaUUpRoFUsyaBZHQKP/SkjX4CZ1fZQoaAZoCWgPQwiuKvuuCH77v5SGlFKUaBVLMmgWR0CkAP08V58jdX2UKGgGaAloD0MI4lrtYS/UA8CUhpRSlGgVSzJoFkdApAC6Km8/U3V9lChoBmgJaA9DCAeynlp9dQnAlIaUUpRoFUsyaBZHQKQAd0yP+4t1fZQoaAZoCWgPQwi95H/yd58UwJSGlFKUaBVLMmgWR0CkADjRD1GtdX2UKGgGaAloD0MITtGRXP7D/b+UhpRSlGgVSzJoFkdApAHfKQq7RXV9lChoBmgJaA9DCOeJ52wBAQXAlIaUUpRoFUsyaBZHQKQBnCBPKuB1fZQoaAZoCWgPQwglPKHXn4QFwJSGlFKUaBVLMmgWR0CkAVk3bVSXdX2UKGgGaAloD0MIHSJuTiUD97+UhpRSlGgVSzJoFkdApAEaf+S8rnV9lChoBmgJaA9DCEHYKVYNwgHAlIaUUpRoFUsyaBZHQKQC3epGWld1fZQoaAZoCWgPQwjKiAtAo8QQwJSGlFKUaBVLMmgWR0CkAprRSgoPdX2UKGgGaAloD0MIxQJf0a3X+7+UhpRSlGgVSzJoFkdApAJYAAAAAHV9lChoBmgJaA9DCOIftvRoKgzAlIaUUpRoFUsyaBZHQKQCGWac7Qt1fZQoaAZoCWgPQwiRgTy7fCv3v5SGlFKUaBVLMmgWR0CkA8V1Oj7AdX2UKGgGaAloD0MIT6+UZYjj97+UhpRSlGgVSzJoFkdApAOCdat9yHV9lChoBmgJaA9DCF8pyxDHOgHAlIaUUpRoFUsyaBZHQKQDP5X2dup1fZQoaAZoCWgPQwiI9rGC3wYEwJSGlFKUaBVLMmgWR0CkAwD3Ehq1dX2UKGgGaAloD0MI2H+dmzZj87+UhpRSlGgVSzJoFkdApASxccENfHV9lChoBmgJaA9DCGLzcW2oGBPAlIaUUpRoFUsyaBZHQKQEbw2l2vB1fZQoaAZoCWgPQwgdlDDT9s8CwJSGlFKUaBVLMmgWR0CkBCz+3pfQdX2UKGgGaAloD0MI3J4gsd09+b+UhpRSlGgVSzJoFkdApAPvFo+OfnV9lChoBmgJaA9DCO4/Mh06vQjAlIaUUpRoFUsyaBZHQKQFpD+BH091fZQoaAZoCWgPQwizfjMxXYj9v5SGlFKUaBVLMmgWR0CkBWEhA4XGdX2UKGgGaAloD0MI3PY96q8XAcCUhpRSlGgVSzJoFkdApAUeYtxuK3V9lChoBmgJaA9DCN1ELc2tMATAlIaUUpRoFUsyaBZHQKQE38w5/9Z1fZQoaAZoCWgPQwhKJxJMNfP8v5SGlFKUaBVLMmgWR0CkBoypR4yHdX2UKGgGaAloD0MI9pmzPuVYDMCUhpRSlGgVSzJoFkdApAZJrP+n63V9lChoBmgJaA9DCNujN9xHXhTAlIaUUpRoFUsyaBZHQKQGBwWnCO51fZQoaAZoCWgPQwjGia92FBcQwJSGlFKUaBVLMmgWR0CkBcheokzHdX2UKGgGaAloD0MIAYdQpWa/EcCUhpRSlGgVSzJoFkdApAeNwDNhVnV9lChoBmgJaA9DCGU4ns+AOv2/lIaUUpRoFUsyaBZHQKQHSrsByS51fZQoaAZoCWgPQwh+AihGlmwIwJSGlFKUaBVLMmgWR0CkBwf/3nIRdX2UKGgGaAloD0MIMo/8wcBz+7+UhpRSlGgVSzJoFkdApAbJZha1TnV9lChoBmgJaA9DCBanWguzsAPAlIaUUpRoFUsyaBZHQKQIebXpW3l1fZQoaAZoCWgPQwgy5UNQNWoRwJSGlFKUaBVLMmgWR0CkCDbi6xxDdX2UKGgGaAloD0MI1siutIyU+7+UhpRSlGgVSzJoFkdApAf0MG5c1XV9lChoBmgJaA9DCK7TSEvlzQ7AlIaUUpRoFUsyaBZHQKQHtbO/tY11fZQoaAZoCWgPQwhrEVFM3sD5v5SGlFKUaBVLMmgWR0CkCXgqur6tdX2UKGgGaAloD0MIBi6PNSODBsCUhpRSlGgVSzJoFkdApAk1HlOoHnV9lChoBmgJaA9DCNujN9xHfhDAlIaUUpRoFUsyaBZHQKQI8n2Iwdt1fZQoaAZoCWgPQwibBG9Io9ISwJSGlFKUaBVLMmgWR0CkCLPicXnAdX2UKGgGaAloD0MISpuqe2QTCsCUhpRSlGgVSzJoFkdApApl72L5ynV9lChoBmgJaA9DCJmesMQDagDAlIaUUpRoFUsyaBZHQKQKItxMnJF1fZQoaAZoCWgPQwj4F0FjJpH4v5SGlFKUaBVLMmgWR0CkCeAU1yeadX2UKGgGaAloD0MItkqwOJx5DMCUhpRSlGgVSzJoFkdApAmhg1FYuHV9lChoBmgJaA9DCNrnMcozrwbAlIaUUpRoFUsyaBZHQKQLYcZtNzt1fZQoaAZoCWgPQwhwzR39L/cEwJSGlFKUaBVLMmgWR0CkCx69K28adX2UKGgGaAloD0MI8x/Sb1+HAsCUhpRSlGgVSzJoFkdApArcHhS9/XV9lChoBmgJaA9DCFvNOuP74ve/lIaUUpRoFUsyaBZHQKQKnXfZVXF1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9bf8016f34261b52a200df20b4cadcb4fd754db3cb67222d51dec26fec62821
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2151b6703beadf3f67d9eabfb1428d4161e9bb203989219ee321ee1ba85631c3
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7faeb9571040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7faeb9568ae0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675604499214637415, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAUInePk+9fDxAbBU/UInePk+9fDxAbBU/UInePk+9fDxAbBU/UInePk+9fDxAbBU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAM7N+P4Nl2L7rBsc/Mr3Bv7HARb4Ff5Q+zXi+v716m7/YGIe/hCMCv60wSD4ep8Q/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABQid4+T718PEBsFT/BE4m8kBY3OzXuurxQid4+T718PEBsFT/BE4m8kBY3OzXuurxQid4+T718PEBsFT/BE4m8kBY3OzXuurxQid4+T718PEBsFT/BE4m8kBY3OzXuuryUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.43464136 0.01542599 0.583683 ]\n [0.43464136 0.01542599 0.583683 ]\n [0.43464136 0.01542599 0.583683 ]\n [0.43464136 0.01542599 0.583683 ]]", "desired_goal": "[[ 0.99492186 -0.42264947 1.5548986 ]\n [-1.5135863 -0.19311787 0.29003158]\n [-1.4880615 -1.2146832 -1.0554457 ]\n [-0.5083544 0.19549818 1.53635 ]]", "observation": "[[ 0.43464136 0.01542599 0.583683 -0.01673305 0.0027937 -0.02281866]\n [ 0.43464136 0.01542599 0.583683 -0.01673305 0.0027937 -0.02281866]\n [ 0.43464136 0.01542599 0.583683 -0.01673305 0.0027937 -0.02281866]\n [ 0.43464136 0.01542599 0.583683 -0.01673305 0.0027937 -0.02281866]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAR8+lvRxEsj3aQV8+mc22PFMM/z0mVog+rw6vPS+/zj3cKWo+1tTjPNiJFz4iBoE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.08096176 0.08704397 0.21802464]\n [ 0.02231483 0.12453523 0.26628226]\n [ 0.08547723 0.10095059 0.2286753 ]\n [ 0.02781145 0.14798677 0.2519999 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQ+bKoNrABMCUhpRSlIwBbJRLMowBdJRHQKP0sCgbp/x1fZQoaAZoCWgPQwiGx34WS9H5v5SGlFKUaBVLMmgWR0Cj9G1rhzeXdX2UKGgGaAloD0MIwHgGDf2zAcCUhpRSlGgVSzJoFkdAo/Qqj1wo9nV9lChoBmgJaA9DCEMewY2UjQzAlIaUUpRoFUsyaBZHQKPz7ALy+Yd1fZQoaAZoCWgPQwi/tn76z3oEwJSGlFKUaBVLMmgWR0Cj9Z3xnWaudX2UKGgGaAloD0MIYD3uW63jEcCUhpRSlGgVSzJoFkdAo/Va3solU3V9lChoBmgJaA9DCBy2Lcps0ATAlIaUUpRoFUsyaBZHQKP1GDbrTph1fZQoaAZoCWgPQwjEeTiB6TT+v5SGlFKUaBVLMmgWR0Cj9NneJpFkdX2UKGgGaAloD0MI/n3GhQPBAMCUhpRSlGgVSzJoFkdAo/ai6Ymb9nV9lChoBmgJaA9DCHDtRElIxAHAlIaUUpRoFUsyaBZHQKP2YGqPwNN1fZQoaAZoCWgPQwiaYDjXMCMCwJSGlFKUaBVLMmgWR0Cj9h2rn1WbdX2UKGgGaAloD0MI1xNdF36AEsCUhpRSlGgVSzJoFkdAo/XfNu+AVnV9lChoBmgJaA9DCOjewyXHXQbAlIaUUpRoFUsyaBZHQKP3liPyTZB1fZQoaAZoCWgPQwhHHogs0hQYwJSGlFKUaBVLMmgWR0Cj91MDW9UTdX2UKGgGaAloD0MImgXaHVKM/b+UhpRSlGgVSzJoFkdAo/cQhOgxrXV9lChoBmgJaA9DCL4Ts14M5QHAlIaUUpRoFUsyaBZHQKP20eBg/kh1fZQoaAZoCWgPQwjhzoWRXhT/v5SGlFKUaBVLMmgWR0Cj+KB9kSVXdX2UKGgGaAloD0MIgSTs20lEBcCUhpRSlGgVSzJoFkdAo/hdhAnlXHV9lChoBmgJaA9DCDqvsUtUjwPAlIaUUpRoFUsyaBZHQKP4GrHU+cJ1fZQoaAZoCWgPQwiKBFPNrIUCwJSGlFKUaBVLMmgWR0Cj99wQ+UyIdX2UKGgGaAloD0MIz8DIy5rY/b+UhpRSlGgVSzJoFkdAo/mP/kvK2nV9lChoBmgJaA9DCOXwSScSDALAlIaUUpRoFUsyaBZHQKP5TN0vGqB1fZQoaAZoCWgPQwiBP/z892AJwJSGlFKUaBVLMmgWR0Cj+Qn7gsK9dX2UKGgGaAloD0MIH9eGinH+A8CUhpRSlGgVSzJoFkdAo/jLYRNAT3V9lChoBmgJaA9DCLr4254gMQDAlIaUUpRoFUsyaBZHQKP6mafjCHh1fZQoaAZoCWgPQwj/PA0YJD37v5SGlFKUaBVLMmgWR0Cj+la7VawEdX2UKGgGaAloD0MIEaj+QSSjAcCUhpRSlGgVSzJoFkdAo/oUSmIj4nV9lChoBmgJaA9DCB/zAYHOhADAlIaUUpRoFUsyaBZHQKP51gQ6IWR1fZQoaAZoCWgPQwjjHHV0XE0DwJSGlFKUaBVLMmgWR0Cj+4qgyuZDdX2UKGgGaAloD0MIOzjYmxgyCsCUhpRSlGgVSzJoFkdAo/tHko4MnnV9lChoBmgJaA9DCIS9iSE52QTAlIaUUpRoFUsyaBZHQKP7BNqxkd51fZQoaAZoCWgPQwjpLLMIxVYFwJSGlFKUaBVLMmgWR0Cj+sZX2dupdX2UKGgGaAloD0MIWhKgppat/r+UhpRSlGgVSzJoFkdAo/xqfjCHh3V9lChoBmgJaA9DCIuoiT4fpf2/lIaUUpRoFUsyaBZHQKP8J4L1EmZ1fZQoaAZoCWgPQwgJNq5/12f/v5SGlFKUaBVLMmgWR0Cj++TaK1ohdX2UKGgGaAloD0MIbCIzF7g8BMCUhpRSlGgVSzJoFkdAo/umTX8O1HV9lChoBmgJaA9DCEQ0uoPYOQnAlIaUUpRoFUsyaBZHQKP9YVopQUJ1fZQoaAZoCWgPQwjUCz7NyQv0v5SGlFKUaBVLMmgWR0Cj/R5Zr56/dX2UKGgGaAloD0MIKH/3jhqT/r+UhpRSlGgVSzJoFkdAo/zbkU9IPXV9lChoBmgJaA9DCIJvmj47IAPAlIaUUpRoFUsyaBZHQKP8nQrMC911fZQoaAZoCWgPQwhiZTTyecX0v5SGlFKUaBVLMmgWR0Cj/lACOmzjdX2UKGgGaAloD0MIml/NAYL5CMCUhpRSlGgVSzJoFkdAo/4NCzC1qnV9lChoBmgJaA9DCDdUjPM3AQbAlIaUUpRoFUsyaBZHQKP9ymUnogV1fZQoaAZoCWgPQwhyNEdWfpn3v5SGlFKUaBVLMmgWR0Cj/YvEKmbcdX2UKGgGaAloD0MIcAfqlEcXBMCUhpRSlGgVSzJoFkdAo/84L1EmY3V9lChoBmgJaA9DCMecZ+xLZhDAlIaUUpRoFUsyaBZHQKP+9RrJr+J1fZQoaAZoCWgPQwjizK/mAMH6v5SGlFKUaBVLMmgWR0Cj/rJvYODrdX2UKGgGaAloD0MIXtkFg2vuBMCUhpRSlGgVSzJoFkdAo/5z8FY+0XV9lChoBmgJaA9DCDEnaJPDJ/G/lIaUUpRoFUsyaBZHQKQADt1IRRN1fZQoaAZoCWgPQwiuZp3xfTH5v5SGlFKUaBVLMmgWR0Cj/8u/k/8mdX2UKGgGaAloD0MI1ULJ5NRO97+UhpRSlGgVSzJoFkdAo/+I/Z/Tb3V9lChoBmgJaA9DCKOx9ne2R/e/lIaUUpRoFUsyaBZHQKP/SkjX4CZ1fZQoaAZoCWgPQwiuKvuuCH77v5SGlFKUaBVLMmgWR0CkAP08V58jdX2UKGgGaAloD0MI4lrtYS/UA8CUhpRSlGgVSzJoFkdApAC6Km8/U3V9lChoBmgJaA9DCAeynlp9dQnAlIaUUpRoFUsyaBZHQKQAd0yP+4t1fZQoaAZoCWgPQwi95H/yd58UwJSGlFKUaBVLMmgWR0CkADjRD1GtdX2UKGgGaAloD0MITtGRXP7D/b+UhpRSlGgVSzJoFkdApAHfKQq7RXV9lChoBmgJaA9DCOeJ52wBAQXAlIaUUpRoFUsyaBZHQKQBnCBPKuB1fZQoaAZoCWgPQwglPKHXn4QFwJSGlFKUaBVLMmgWR0CkAVk3bVSXdX2UKGgGaAloD0MIHSJuTiUD97+UhpRSlGgVSzJoFkdApAEaf+S8rnV9lChoBmgJaA9DCEHYKVYNwgHAlIaUUpRoFUsyaBZHQKQC3epGWld1fZQoaAZoCWgPQwjKiAtAo8QQwJSGlFKUaBVLMmgWR0CkAprRSgoPdX2UKGgGaAloD0MIxQJf0a3X+7+UhpRSlGgVSzJoFkdApAJYAAAAAHV9lChoBmgJaA9DCOIftvRoKgzAlIaUUpRoFUsyaBZHQKQCGWac7Qt1fZQoaAZoCWgPQwiRgTy7fCv3v5SGlFKUaBVLMmgWR0CkA8V1Oj7AdX2UKGgGaAloD0MIT6+UZYjj97+UhpRSlGgVSzJoFkdApAOCdat9yHV9lChoBmgJaA9DCF8pyxDHOgHAlIaUUpRoFUsyaBZHQKQDP5X2dup1fZQoaAZoCWgPQwiI9rGC3wYEwJSGlFKUaBVLMmgWR0CkAwD3Ehq1dX2UKGgGaAloD0MI2H+dmzZj87+UhpRSlGgVSzJoFkdApASxccENfHV9lChoBmgJaA9DCGLzcW2oGBPAlIaUUpRoFUsyaBZHQKQEbw2l2vB1fZQoaAZoCWgPQwgdlDDT9s8CwJSGlFKUaBVLMmgWR0CkBCz+3pfQdX2UKGgGaAloD0MI3J4gsd09+b+UhpRSlGgVSzJoFkdApAPvFo+OfnV9lChoBmgJaA9DCO4/Mh06vQjAlIaUUpRoFUsyaBZHQKQFpD+BH091fZQoaAZoCWgPQwizfjMxXYj9v5SGlFKUaBVLMmgWR0CkBWEhA4XGdX2UKGgGaAloD0MI3PY96q8XAcCUhpRSlGgVSzJoFkdApAUeYtxuK3V9lChoBmgJaA9DCN1ELc2tMATAlIaUUpRoFUsyaBZHQKQE38w5/9Z1fZQoaAZoCWgPQwhKJxJMNfP8v5SGlFKUaBVLMmgWR0CkBoypR4yHdX2UKGgGaAloD0MI9pmzPuVYDMCUhpRSlGgVSzJoFkdApAZJrP+n63V9lChoBmgJaA9DCNujN9xHXhTAlIaUUpRoFUsyaBZHQKQGBwWnCO51fZQoaAZoCWgPQwjGia92FBcQwJSGlFKUaBVLMmgWR0CkBcheokzHdX2UKGgGaAloD0MIAYdQpWa/EcCUhpRSlGgVSzJoFkdApAeNwDNhVnV9lChoBmgJaA9DCGU4ns+AOv2/lIaUUpRoFUsyaBZHQKQHSrsByS51fZQoaAZoCWgPQwh+AihGlmwIwJSGlFKUaBVLMmgWR0CkBwf/3nIRdX2UKGgGaAloD0MIMo/8wcBz+7+UhpRSlGgVSzJoFkdApAbJZha1TnV9lChoBmgJaA9DCBanWguzsAPAlIaUUpRoFUsyaBZHQKQIebXpW3l1fZQoaAZoCWgPQwgy5UNQNWoRwJSGlFKUaBVLMmgWR0CkCDbi6xxDdX2UKGgGaAloD0MI1siutIyU+7+UhpRSlGgVSzJoFkdApAf0MG5c1XV9lChoBmgJaA9DCK7TSEvlzQ7AlIaUUpRoFUsyaBZHQKQHtbO/tY11fZQoaAZoCWgPQwhrEVFM3sD5v5SGlFKUaBVLMmgWR0CkCXgqur6tdX2UKGgGaAloD0MIBi6PNSODBsCUhpRSlGgVSzJoFkdApAk1HlOoHnV9lChoBmgJaA9DCNujN9xHfhDAlIaUUpRoFUsyaBZHQKQI8n2Iwdt1fZQoaAZoCWgPQwibBG9Io9ISwJSGlFKUaBVLMmgWR0CkCLPicXnAdX2UKGgGaAloD0MISpuqe2QTCsCUhpRSlGgVSzJoFkdApApl72L5ynV9lChoBmgJaA9DCJmesMQDagDAlIaUUpRoFUsyaBZHQKQKItxMnJF1fZQoaAZoCWgPQwj4F0FjJpH4v5SGlFKUaBVLMmgWR0CkCeAU1yeadX2UKGgGaAloD0MItkqwOJx5DMCUhpRSlGgVSzJoFkdApAmhg1FYuHV9lChoBmgJaA9DCNrnMcozrwbAlIaUUpRoFUsyaBZHQKQLYcZtNzt1fZQoaAZoCWgPQwhwzR39L/cEwJSGlFKUaBVLMmgWR0CkCx69K28adX2UKGgGaAloD0MI8x/Sb1+HAsCUhpRSlGgVSzJoFkdApArcHhS9/XV9lChoBmgJaA9DCFvNOuP74ve/lIaUUpRoFUsyaBZHQKQKnXfZVXF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (732 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.5327803909778597, "std_reward": 1.0643992400483635, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-05T14:24:55.934029"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c5588df79318c96588626c63846aa8661c24802fa76173c07c60e936b18035f
3
+ size 3056