import gradio as gr import tensorflow as tf import numpy as np from datasets import load_dataset from network import create_text_neural_network, create_gating_network from agent import PrimeAgent, SecondaryAgent # Define the neural networks and agents as described above vocab_size = 10000 embedding_dim = 128 input_length = 100 num_classes = 10 num_experts = 3 gating_network = create_gating_network((input_length,), num_experts) expert_networks = [create_text_neural_network(vocab_size, embedding_dim, input_length, num_classes) for _ in range(num_experts)] specialties = ['code writing', 'code debugging', 'code optimization'] secondary_agents = [SecondaryAgent(expert_networks[i], specialties[i]) for i in range(num_experts)] prime_agent = PrimeAgent(gating_network, secondary_agents) # Define a simple function to handle chat input and produce a response def developer_assistant(input_text): # For simplicity, use a random response from one of the experts response = "Understood. Here's what I can suggest:" # Convert the input text to numerical data tokenizer = tf.keras.preprocessing.text.Tokenizer(num_words=vocab_size) tokenizer.fit_on_texts([input_text]) input_data = tokenizer.texts_to_sequences([input_text]) input_data = tf.keras.preprocessing.sequence.pad_sequences(input_data, maxlen=input_length) # Use the prime agent to get the action (response) action = prime_agent.act(input_data) response += f"\\nExpert {action}: {specialties[action]}." return response # Define a function to display code (placeholder for actual functionality) def display_code(): code_snippet = ''' def example_function(param1, param2): # Example function result = param1 + param2 return result ''' return code_snippet # Create the Gradio interface gr_interface = gr.Interface( fn=developer_assistant, inputs=gr.inputs.Textbox(lines=5, placeholder="Enter your request here..."), outputs=[ gr.outputs.Textbox(label="Response"), gr.outputs.Code(language="python", label="Generated Code") ], title="Developer Assistant Chat Interface", description="Interact with the assistant to get code suggestions, debugging help, and more." ) # Launch the interface gr_interface.launch()