dnouri commited on
Commit
553d558
·
1 Parent(s): 0ce5d66

Symlink README.md

Browse files
Files changed (3) hide show
  1. README.md +96 -0
  2. docs/README.md +0 -96
  3. docs/README.md +1 -0
README.md ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Model Overview
2
+ A pre-trained model for volumetric (3D) segmentation of brain tumor subregions from multimodal MRIs based on BraTS 2018 data. The whole pipeline is modified from [clara_pt_brain_mri_segmentation](https://catalog.ngc.nvidia.com/orgs/nvidia/teams/med/models/clara_pt_brain_mri_segmentation).
3
+
4
+ ## Workflow
5
+
6
+ The model is trained to segment 3 nested subregions of primary brain tumors (gliomas): the "enhancing tumor" (ET), the "tumor core" (TC), the "whole tumor" (WT) based on 4 aligned input MRI scans (T1c, T1, T2, FLAIR).
7
+ - The ET is described by areas that show hyper intensity in T1c when compared to T1, but also when compared to "healthy" white matter in T1c.
8
+ - The TC describes the bulk of the tumor, which is what is typically resected. The TC entails the ET, as well as the necrotic (fluid-filled) and the non-enhancing (solid) parts of the tumor.
9
+ - The WT describes the complete extent of the disease, as it entails the TC and the peritumoral edema (ED), which is typically depicted by hyper-intense signal in FLAIR.
10
+
11
+ ## Data
12
+
13
+ The training data is from the [Multimodal Brain Tumor Segmentation Challenge (BraTS) 2018](https://www.med.upenn.edu/sbia/brats2018/data.html).
14
+
15
+ - Target: 3 tumor subregions
16
+ - Task: Segmentation
17
+ - Modality: MRI
18
+ - Size: 285 3D volumes (4 channels each)
19
+
20
+ The provided labelled data was partitioned, based on our own split, into training (200 studies), validation (42 studies) and testing (43 studies) datasets.
21
+
22
+ Please run `scripts/prepare_datalist.py` to produce the data list. The command is like:
23
+
24
+ ```
25
+ python scripts/prepare_datalist.py --path your-brats18-dataset-path
26
+ ```
27
+
28
+ ## Training configuration
29
+
30
+ This model utilized a similar approach described in 3D MRI brain tumor segmentation
31
+ using autoencoder regularization, which was a winning method in BraTS2018 [1]. The training was performed with the following:
32
+
33
+ - GPU: At least 16GB of GPU memory.
34
+ - Actual Model Input: 224 x 224 x 144
35
+ - AMP: True
36
+ - Optimizer: Adam
37
+ - Learning Rate: 1e-4
38
+ - Loss: DiceLoss
39
+
40
+ ## Input
41
+
42
+ Input: 4 channel MRI (4 aligned MRIs T1c, T1, T2, FLAIR at 1x1x1 mm)
43
+
44
+ 1. Normalizing to unit std with zero mean
45
+ 2. Randomly cropping to (224, 224, 144)
46
+ 3. Randomly spatial flipping
47
+ 4. Randomly scaling and shifting intensity of the volume
48
+
49
+ ## Output
50
+
51
+ Output: 3 channels
52
+ - Label 0: TC tumor subregion
53
+ - Label 1: WT tumor subregion
54
+ - Label 2: ET tumor subregion
55
+
56
+ ## Model Performance
57
+
58
+ The achieved Dice scores on the validation data are:
59
+ - Tumor core (TC): 0.8559
60
+ - Whole tumor (WT): 0.9026
61
+ - Enhancing tumor (ET): 0.7905
62
+ - Average: 0.8518
63
+
64
+ ## commands example
65
+
66
+ Execute training:
67
+
68
+ ```
69
+ python -m monai.bundle run training --meta_file configs/metadata.json --config_file configs/train.json --logging_file configs/logging.conf
70
+ ```
71
+
72
+ Override the `train` config to execute multi-GPU training:
73
+
74
+ ```
75
+ torchrun --standalone --nnodes=1 --nproc_per_node=8 -m monai.bundle run training --meta_file configs/metadata.json --config_file "['configs/train.json','configs/multi_gpu_train.json']" --logging_file configs/logging.conf
76
+ ```
77
+
78
+ Override the `train` config to execute evaluation with the trained model:
79
+
80
+ ```
81
+ python -m monai.bundle run evaluating --meta_file configs/metadata.json --config_file "['configs/train.json','configs/evaluate.json']" --logging_file configs/logging.conf
82
+ ```
83
+
84
+ Execute inference:
85
+
86
+ ```
87
+ python -m monai.bundle run evaluating --meta_file configs/metadata.json --config_file configs/inference.json --logging_file configs/logging.conf
88
+ ```
89
+
90
+ # Disclaimer
91
+
92
+ This is an example, not to be used for diagnostic purposes.
93
+
94
+ # References
95
+
96
+ [1] Myronenko, Andriy. "3D MRI brain tumor segmentation using autoencoder regularization." International MICCAI Brainlesion Workshop. Springer, Cham, 2018. https://arxiv.org/abs/1810.11654.
docs/README.md DELETED
@@ -1,96 +0,0 @@
1
- # Model Overview
2
- A pre-trained model for volumetric (3D) segmentation of brain tumor subregions from multimodal MRIs based on BraTS 2018 data. The whole pipeline is modified from [clara_pt_brain_mri_segmentation](https://catalog.ngc.nvidia.com/orgs/nvidia/teams/med/models/clara_pt_brain_mri_segmentation).
3
-
4
- ## Workflow
5
-
6
- The model is trained to segment 3 nested subregions of primary brain tumors (gliomas): the "enhancing tumor" (ET), the "tumor core" (TC), the "whole tumor" (WT) based on 4 aligned input MRI scans (T1c, T1, T2, FLAIR).
7
- - The ET is described by areas that show hyper intensity in T1c when compared to T1, but also when compared to "healthy" white matter in T1c.
8
- - The TC describes the bulk of the tumor, which is what is typically resected. The TC entails the ET, as well as the necrotic (fluid-filled) and the non-enhancing (solid) parts of the tumor.
9
- - The WT describes the complete extent of the disease, as it entails the TC and the peritumoral edema (ED), which is typically depicted by hyper-intense signal in FLAIR.
10
-
11
- ## Data
12
-
13
- The training data is from the [Multimodal Brain Tumor Segmentation Challenge (BraTS) 2018](https://www.med.upenn.edu/sbia/brats2018/data.html).
14
-
15
- - Target: 3 tumor subregions
16
- - Task: Segmentation
17
- - Modality: MRI
18
- - Size: 285 3D volumes (4 channels each)
19
-
20
- The provided labelled data was partitioned, based on our own split, into training (200 studies), validation (42 studies) and testing (43 studies) datasets.
21
-
22
- Please run `scripts/prepare_datalist.py` to produce the data list. The command is like:
23
-
24
- ```
25
- python scripts/prepare_datalist.py --path your-brats18-dataset-path
26
- ```
27
-
28
- ## Training configuration
29
-
30
- This model utilized a similar approach described in 3D MRI brain tumor segmentation
31
- using autoencoder regularization, which was a winning method in BraTS2018 [1]. The training was performed with the following:
32
-
33
- - GPU: At least 16GB of GPU memory.
34
- - Actual Model Input: 224 x 224 x 144
35
- - AMP: True
36
- - Optimizer: Adam
37
- - Learning Rate: 1e-4
38
- - Loss: DiceLoss
39
-
40
- ## Input
41
-
42
- Input: 4 channel MRI (4 aligned MRIs T1c, T1, T2, FLAIR at 1x1x1 mm)
43
-
44
- 1. Normalizing to unit std with zero mean
45
- 2. Randomly cropping to (224, 224, 144)
46
- 3. Randomly spatial flipping
47
- 4. Randomly scaling and shifting intensity of the volume
48
-
49
- ## Output
50
-
51
- Output: 3 channels
52
- - Label 0: TC tumor subregion
53
- - Label 1: WT tumor subregion
54
- - Label 2: ET tumor subregion
55
-
56
- ## Model Performance
57
-
58
- The achieved Dice scores on the validation data are:
59
- - Tumor core (TC): 0.8559
60
- - Whole tumor (WT): 0.9026
61
- - Enhancing tumor (ET): 0.7905
62
- - Average: 0.8518
63
-
64
- ## commands example
65
-
66
- Execute training:
67
-
68
- ```
69
- python -m monai.bundle run training --meta_file configs/metadata.json --config_file configs/train.json --logging_file configs/logging.conf
70
- ```
71
-
72
- Override the `train` config to execute multi-GPU training:
73
-
74
- ```
75
- torchrun --standalone --nnodes=1 --nproc_per_node=8 -m monai.bundle run training --meta_file configs/metadata.json --config_file "['configs/train.json','configs/multi_gpu_train.json']" --logging_file configs/logging.conf
76
- ```
77
-
78
- Override the `train` config to execute evaluation with the trained model:
79
-
80
- ```
81
- python -m monai.bundle run evaluating --meta_file configs/metadata.json --config_file "['configs/train.json','configs/evaluate.json']" --logging_file configs/logging.conf
82
- ```
83
-
84
- Execute inference:
85
-
86
- ```
87
- python -m monai.bundle run evaluating --meta_file configs/metadata.json --config_file configs/inference.json --logging_file configs/logging.conf
88
- ```
89
-
90
- # Disclaimer
91
-
92
- This is an example, not to be used for diagnostic purposes.
93
-
94
- # References
95
-
96
- [1] Myronenko, Andriy. "3D MRI brain tumor segmentation using autoencoder regularization." International MICCAI Brainlesion Workshop. Springer, Cham, 2018. https://arxiv.org/abs/1810.11654.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
docs/README.md ADDED
@@ -0,0 +1 @@
 
 
1
+ /home/daniel/co/brats_mri_segmentation/README.md