{ "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json", "version": "0.1.0", "changelog": { "0.1.0": "complete the model package" }, "monai_version": "0.9.0", "pytorch_version": "1.10.0", "numpy_version": "1.21.2", "optional_packages_version": { "nibabel": "3.2.1", "pytorch-ignite": "0.4.8" }, "task": "Multimodal Brain Tumor segmentation", "description": "A pre-trained model for volumetric (3D) segmentation of brain tumor subregions from multimodal MRIs based on BraTS 2018 data", "authors": "MONAI team", "copyright": "Copyright (c) MONAI Consortium", "data_source": "https://www.med.upenn.edu/sbia/brats2018/data.html", "data_type": "nibabel", "image_classes": "4 channel data, T1c, T1, T2, FLAIR at 1x1x1 mm", "label_classes": "3 channel data, channel 0 for Tumor core, channel 1 for Whole tumor, channel 2 for Enhancing tumor", "pred_classes": "3 channels data, same as label_classes", "eval_metrics": { "val_mean_dice": 0.8518, "val_mean_dice_tc": 0.8559, "val_mean_dice_wt": 0.9026, "val_mean_dice_et": 0.7905 }, "intended_use": "This is an example, not to be used for diagnostic purposes", "references": [ "Myronenko, Andriy. '3D MRI brain tumor segmentation using autoencoder regularization.' International MICCAI Brainlesion Workshop. Springer, Cham, 2018. https://arxiv.org/abs/1810.11654" ], "network_data_format": { "inputs": { "image": { "type": "image", "format": "magnitude", "modality": "MR", "num_channels": 4, "spatial_shape": [ "8*n", "8*n", "8*n" ], "dtype": "float32", "value_range": [ 0, 1 ], "is_patch_data": true, "channel_def": { "0": "image" } } }, "outputs": { "pred": { "type": "image", "format": "segmentation", "num_channels": 3, "spatial_shape": [ "8*n", "8*n", "8*n" ], "dtype": "float32", "value_range": [ 0, 1 ], "is_patch_data": true, "channel_def": { "0": "background", "1": "spleen" } } } } }