{ "imports": [ "$import glob", "$import os" ], "bundle_root": "/workspace/brats_mri_segmentation", "ckpt_dir": "$@bundle_root + '/models'", "output_dir": "$@bundle_root + '/eval'", "data_list_file_path": "$@bundle_root + '/configs/datalist.json'", "data_file_base_dir": "/workspace/data/medical/brats2018challenge", "test_datalist": "$monai.data.load_decathlon_datalist(@data_list_file_path, data_list_key='testing', base_dir=@data_file_base_dir)", "device": "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')", "amp": true, "network_def": { "_target_": "SegResNet", "blocks_down": [ 1, 2, 2, 4 ], "blocks_up": [ 1, 1, 1 ], "init_filters": 16, "in_channels": 4, "out_channels": 3, "dropout_prob": 0.2 }, "network": "$@network_def.to(@device)", "preprocessing": { "_target_": "Compose", "transforms": [ { "_target_": "LoadImaged", "keys": "image" }, { "_target_": "NormalizeIntensityd", "keys": "image", "nonzero": true, "channel_wise": true }, { "_target_": "ToTensord", "keys": "image" } ] }, "dataset": { "_target_": "Dataset", "data": "@test_datalist", "transform": "@preprocessing" }, "dataloader": { "_target_": "DataLoader", "dataset": "@dataset", "batch_size": 1, "shuffle": true, "num_workers": 4 }, "inferer": { "_target_": "SlidingWindowInferer", "roi_size": [ 240, 240, 160 ], "sw_batch_size": 1, "overlap": 0.5 }, "postprocessing": { "_target_": "Compose", "transforms": [ { "_target_": "Activationsd", "keys": "pred", "sigmoid": true }, { "_target_": "Invertd", "keys": "pred", "transform": "@preprocessing", "orig_keys": "image", "meta_keys": "pred_meta_dict", "nearest_interp": false, "to_tensor": true }, { "_target_": "AsDiscreted", "keys": "pred", "threshold": 0.5 }, { "_target_": "SaveImaged", "keys": "pred", "meta_keys": "pred_meta_dict", "output_dir": "@output_dir" } ] }, "handlers": [ { "_target_": "CheckpointLoader", "load_path": "$@bundle_root + '/models/model.pt'", "load_dict": { "model": "@network" } }, { "_target_": "StatsHandler", "iteration_log": false } ], "evaluator": { "_target_": "SupervisedEvaluator", "device": "@device", "val_data_loader": "@dataloader", "network": "@network", "inferer": "@inferer", "postprocessing": "@postprocessing", "val_handlers": "@handlers", "amp": true }, "evaluating": [ "$setattr(torch.backends.cudnn, 'benchmark', True)", "$@evaluator.run()" ] }