Text2Text Generation
Transformers
PyTorch
Hindi
mt5
Inference Endpoints
File size: 4,917 Bytes
503282c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import argparse
import logging
from torch.utils.data import Dataset, IterableDataset
import gzip
import json
from transformers import Seq2SeqTrainer, AutoModelForSeq2SeqLM, AutoTokenizer, Seq2SeqTrainingArguments
import sys
from datetime import datetime
import torch
import random
from shutil import copyfile
import os
import wandb
import random
import re
from datasets import load_dataset
import tqdm


logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
    datefmt="%Y-%m-%d %H:%M:%S",
    handlers=[logging.StreamHandler(sys.stdout)],
)

parser = argparse.ArgumentParser()
parser.add_argument("--lang", required=True)
parser.add_argument("--model_name", default="google/mt5-base")
parser.add_argument("--epochs", default=4, type=int)
parser.add_argument("--batch_size", default=32, type=int)
parser.add_argument("--max_source_length", default=320, type=int)
parser.add_argument("--max_target_length", default=64, type=int)
parser.add_argument("--eval_size", default=1000, type=int)
#parser.add_argument("--fp16", default=False, action='store_true')
args = parser.parse_args()

wandb.init(project="doc2query", name=f"{args.lang}-{args.model_name}")





def main():
    ############ Load dataset
    queries = {}
    for row in tqdm.tqdm(load_dataset('unicamp-dl/mmarco', f'queries-{args.lang}')['train']):
        queries[row['id']] = row['text']

    """
    collection = {}
    for row in tqdm.tqdm(load_dataset('unicamp-dl/mmarco', f'collection-{args.lang}')['collection']):
        collection[row['id']] = row['text']
    """
    collection = load_dataset('unicamp-dl/mmarco', f'collection-{args.lang}')['collection']

    train_pairs = []
    eval_pairs = []


    with open('qrels.train.tsv') as fIn:
        for line in fIn:
            qid, _, did, _ = line.strip().split("\t")

            qid = int(qid)
            did = int(did)

            assert did == collection[did]['id']
            text = collection[did]['text']

            pair = (queries[qid], text)
            if len(eval_pairs) < args.eval_size:
                eval_pairs.append(pair)
            else:
                train_pairs.append(pair)

  
    print(f"Train pairs: {len(train_pairs)}")


    ############ Model
    model = AutoModelForSeq2SeqLM.from_pretrained(args.model_name)
    tokenizer = AutoTokenizer.from_pretrained(args.model_name)

    save_steps = 1000

    output_dir = 'output/'+args.lang+'-'+args.model_name.replace("/", "-")+'-'+datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
    print("Output dir:", output_dir)

    # Write self to path
    os.makedirs(output_dir, exist_ok=True)

    train_script_path = os.path.join(output_dir, 'train_script.py')
    copyfile(__file__, train_script_path)
    with open(train_script_path, 'a') as fOut:
        fOut.write("\n\n# Script was called via:\n#python " + " ".join(sys.argv))

    ####

    training_args = Seq2SeqTrainingArguments(
        output_dir=output_dir,
        bf16=True,
        per_device_train_batch_size=args.batch_size,
        evaluation_strategy="steps",
        save_steps=save_steps,
        logging_steps=100,
        eval_steps=save_steps, #logging_steps,
        warmup_steps=1000,
        save_total_limit=1,
        num_train_epochs=args.epochs,
        report_to="wandb",
    )

    ############ Arguments

    ############ Load datasets


    print("Input:", train_pairs[0][1])
    print("Target:", train_pairs[0][0])

    print("Input:", eval_pairs[0][1])
    print("Target:", eval_pairs[0][0])


    def data_collator(examples):
        targets = [row[0] for row in examples]
        inputs = [row[1] for row in examples]
        label_pad_token_id = -100

        model_inputs = tokenizer(inputs, max_length=args.max_source_length, padding=True, truncation=True, return_tensors='pt', pad_to_multiple_of=8 if training_args.fp16 else None)

        # Setup the tokenizer for targets
        with tokenizer.as_target_tokenizer():
            labels = tokenizer(targets, max_length=args.max_target_length, padding=True, truncation=True, pad_to_multiple_of=8 if training_args.fp16 else None)

        # replace all tokenizer.pad_token_id in the labels by -100 to ignore padding in the loss.
        labels["input_ids"] = [
            [(l if l != tokenizer.pad_token_id else label_pad_token_id) for l in label] for label in labels["input_ids"]
        ]


        model_inputs["labels"] = torch.tensor(labels["input_ids"])
        return model_inputs

    ## Define the trainer
    trainer = Seq2SeqTrainer(
        model=model,
        args=training_args,
        train_dataset=train_pairs,
        eval_dataset=eval_pairs,
        tokenizer=tokenizer,
        data_collator=data_collator
    )

    ### Save the model
    train_result = trainer.train()
    trainer.save_model()
    
    
if __name__ == "__main__":
    main()

# Script was called via:
#python train_hf_trainer_multilingual.py --lang hindi