--- base_model: docketanalyzer/docket-lm-xs tags: - generated_from_trainer metrics: - f1 model-index: - name: label-complaint results: [] --- # label-complaint This model is a fine-tuned version of [docketanalyzer/docket-lm-xs](https://huggingface.co/docketanalyzer/docket-lm-xs) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0635 - F1: 0.9828 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.02 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0787 | 1.42 | 60 | 0.0636 | 0.9739 | | 0.0053 | 2.84 | 120 | 0.0489 | 0.9828 | | 0.0029 | 4.26 | 180 | 0.0556 | 0.9828 | | 0.0019 | 5.68 | 240 | 0.0636 | 0.9828 | | 0.0014 | 7.1 | 300 | 0.0638 | 0.9828 | | 0.0012 | 8.52 | 360 | 0.0635 | 0.9828 | | 0.0012 | 9.94 | 420 | 0.0635 | 0.9828 | ### Framework versions - Transformers 4.37.1 - Pytorch 2.1.2+cu121 - Datasets 2.14.4 - Tokenizers 0.15.1