domischwimmbeck's picture
update model card README.md
754708b
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - germa_ner
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-base-german-cased-fine-tuned-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: germa_ner
          type: germa_ner
          args: default
        metrics:
          - name: Precision
            type: precision
            value: 0.8089260808926081
          - name: Recall
            type: recall
            value: 0.872836719337848
          - name: F1
            type: f1
            value: 0.8396670285921101
          - name: Accuracy
            type: accuracy
            value: 0.9748511630761677

bert-base-german-cased-fine-tuned-ner

This model is a fine-tuned version of bert-base-german-cased on the germa_ner dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0966
  • Precision: 0.8089
  • Recall: 0.8728
  • F1: 0.8397
  • Accuracy: 0.9749

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.159 1.0 737 0.0922 0.7472 0.8461 0.7936 0.9703
0.0714 2.0 1474 0.0916 0.7886 0.8713 0.8279 0.9731
0.0319 3.0 2211 0.0966 0.8089 0.8728 0.8397 0.9749

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.9.0+cu111
  • Datasets 2.1.0
  • Tokenizers 0.12.1