--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-german-cased-own-data-ner results: [] --- # bert-base-german-cased-own-data-ner This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0535 - Precision: 0.7134 - Recall: 0.8536 - F1: 0.7772 - Accuracy: 0.9895 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.8 | 32 | 0.0308 | 0.7593 | 0.8 | 0.7791 | 0.9917 | | No log | 1.6 | 64 | 0.0342 | 0.7756 | 0.8393 | 0.8062 | 0.9911 | | No log | 2.4 | 96 | 0.0457 | 0.7764 | 0.8679 | 0.8196 | 0.9906 | | No log | 3.2 | 128 | 0.0383 | 0.7524 | 0.8464 | 0.7966 | 0.9911 | | No log | 4.0 | 160 | 0.0420 | 0.7539 | 0.8536 | 0.8007 | 0.9907 | | No log | 4.8 | 192 | 0.0535 | 0.7134 | 0.8536 | 0.7772 | 0.9895 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.9.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1