--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-german-cased-own-data-ner results: [] --- # bert-base-german-cased-own-data-ner This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0367 - Precision: 0.7687 - Recall: 0.8429 - F1: 0.8041 - Accuracy: 0.9916 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.62 | 50 | 0.0382 | 0.8020 | 0.8393 | 0.8202 | 0.9914 | | No log | 1.25 | 100 | 0.0381 | 0.7421 | 0.8429 | 0.7893 | 0.9904 | | No log | 1.88 | 150 | 0.0380 | 0.7429 | 0.8357 | 0.7866 | 0.9906 | | No log | 2.5 | 200 | 0.0367 | 0.7687 | 0.8429 | 0.8041 | 0.9916 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.9.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1