dondosss commited on
Commit
8d0b393
1 Parent(s): 2be4d3c

Training complete

Browse files
Files changed (1) hide show
  1. README.md +17 -15
README.md CHANGED
@@ -19,11 +19,11 @@ should probably proofread and complete it, then remove this comment. -->
19
 
20
  This model is a fine-tuned version of [DeepPavlov/rubert-base-cased](https://huggingface.co/DeepPavlov/rubert-base-cased) on an unknown dataset.
21
  It achieves the following results on the evaluation set:
22
- - Loss: 0.1466
23
- - Precision: 0.8876
24
- - Recall: 0.9075
25
- - F1: 0.8975
26
- - Accuracy: 0.9608
27
 
28
  ## Model description
29
 
@@ -43,26 +43,28 @@ More information needed
43
 
44
  The following hyperparameters were used during training:
45
  - learning_rate: 2e-05
46
- - train_batch_size: 64
47
- - eval_batch_size: 128
48
  - seed: 42
49
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
- - lr_scheduler_type: linear
51
  - lr_scheduler_warmup_ratio: 0.05
52
- - num_epochs: 3
53
 
54
  ### Training results
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
- | No log | 1.0 | 313 | 0.1607 | 0.8568 | 0.8831 | 0.8697 | 0.9542 |
59
- | 0.3113 | 2.0 | 626 | 0.1510 | 0.8780 | 0.9025 | 0.8901 | 0.9579 |
60
- | 0.3113 | 3.0 | 939 | 0.1466 | 0.8876 | 0.9075 | 0.8975 | 0.9608 |
 
 
61
 
62
 
63
  ### Framework versions
64
 
65
- - Transformers 4.38.2
66
  - Pytorch 2.2.1+cu121
67
- - Datasets 2.18.0
68
- - Tokenizers 0.15.2
 
19
 
20
  This model is a fine-tuned version of [DeepPavlov/rubert-base-cased](https://huggingface.co/DeepPavlov/rubert-base-cased) on an unknown dataset.
21
  It achieves the following results on the evaluation set:
22
+ - Loss: 0.2633
23
+ - Precision: 0.7560
24
+ - Recall: 0.8032
25
+ - F1: 0.7789
26
+ - Accuracy: 0.9251
27
 
28
  ## Model description
29
 
 
43
 
44
  The following hyperparameters were used during training:
45
  - learning_rate: 2e-05
46
+ - train_batch_size: 16
47
+ - eval_batch_size: 64
48
  - seed: 42
49
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: cosine
51
  - lr_scheduler_warmup_ratio: 0.05
52
+ - num_epochs: 2
53
 
54
  ### Training results
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | 0.4805 | 0.4 | 500 | 0.4017 | 0.6644 | 0.7072 | 0.6852 | 0.8788 |
59
+ | 0.3281 | 0.8 | 1000 | 0.2818 | 0.7416 | 0.7886 | 0.7644 | 0.9203 |
60
+ | 0.165 | 1.2 | 1500 | 0.2653 | 0.7573 | 0.8023 | 0.7792 | 0.9244 |
61
+ | 0.2539 | 1.6 | 2000 | 0.2633 | 0.7571 | 0.8040 | 0.7799 | 0.9252 |
62
+ | 0.252 | 2.0 | 2500 | 0.2633 | 0.7560 | 0.8032 | 0.7789 | 0.9251 |
63
 
64
 
65
  ### Framework versions
66
 
67
+ - Transformers 4.40.0
68
  - Pytorch 2.2.1+cu121
69
+ - Datasets 2.19.0
70
+ - Tokenizers 0.19.1