Training complete
Browse files
README.md
CHANGED
@@ -19,11 +19,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
19 |
|
20 |
This model is a fine-tuned version of [DeepPavlov/rubert-base-cased](https://huggingface.co/DeepPavlov/rubert-base-cased) on an unknown dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
-
- Loss: 0.
|
23 |
-
- Precision: 0.
|
24 |
-
- Recall: 0.
|
25 |
-
- F1: 0.
|
26 |
-
- Accuracy: 0.
|
27 |
|
28 |
## Model description
|
29 |
|
@@ -43,26 +43,28 @@ More information needed
|
|
43 |
|
44 |
The following hyperparameters were used during training:
|
45 |
- learning_rate: 2e-05
|
46 |
-
- train_batch_size:
|
47 |
-
- eval_batch_size:
|
48 |
- seed: 42
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
-
- lr_scheduler_type:
|
51 |
- lr_scheduler_warmup_ratio: 0.05
|
52 |
-
- num_epochs:
|
53 |
|
54 |
### Training results
|
55 |
|
56 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
-
|
|
59 |
-
| 0.
|
60 |
-
| 0.
|
|
|
|
|
61 |
|
62 |
|
63 |
### Framework versions
|
64 |
|
65 |
-
- Transformers 4.
|
66 |
- Pytorch 2.2.1+cu121
|
67 |
-
- Datasets 2.
|
68 |
-
- Tokenizers 0.
|
|
|
19 |
|
20 |
This model is a fine-tuned version of [DeepPavlov/rubert-base-cased](https://huggingface.co/DeepPavlov/rubert-base-cased) on an unknown dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.2633
|
23 |
+
- Precision: 0.7560
|
24 |
+
- Recall: 0.8032
|
25 |
+
- F1: 0.7789
|
26 |
+
- Accuracy: 0.9251
|
27 |
|
28 |
## Model description
|
29 |
|
|
|
43 |
|
44 |
The following hyperparameters were used during training:
|
45 |
- learning_rate: 2e-05
|
46 |
+
- train_batch_size: 16
|
47 |
+
- eval_batch_size: 64
|
48 |
- seed: 42
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: cosine
|
51 |
- lr_scheduler_warmup_ratio: 0.05
|
52 |
+
- num_epochs: 2
|
53 |
|
54 |
### Training results
|
55 |
|
56 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
+
| 0.4805 | 0.4 | 500 | 0.4017 | 0.6644 | 0.7072 | 0.6852 | 0.8788 |
|
59 |
+
| 0.3281 | 0.8 | 1000 | 0.2818 | 0.7416 | 0.7886 | 0.7644 | 0.9203 |
|
60 |
+
| 0.165 | 1.2 | 1500 | 0.2653 | 0.7573 | 0.8023 | 0.7792 | 0.9244 |
|
61 |
+
| 0.2539 | 1.6 | 2000 | 0.2633 | 0.7571 | 0.8040 | 0.7799 | 0.9252 |
|
62 |
+
| 0.252 | 2.0 | 2500 | 0.2633 | 0.7560 | 0.8032 | 0.7789 | 0.9251 |
|
63 |
|
64 |
|
65 |
### Framework versions
|
66 |
|
67 |
+
- Transformers 4.40.0
|
68 |
- Pytorch 2.2.1+cu121
|
69 |
+
- Datasets 2.19.0
|
70 |
+
- Tokenizers 0.19.1
|