--- base_model: DeepPavlov/rubert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: rubert-finetuned-ner results: [] --- # rubert-finetuned-ner This model is a fine-tuned version of [DeepPavlov/rubert-base-cased](https://huggingface.co/DeepPavlov/rubert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2633 - Precision: 0.7560 - Recall: 0.8032 - F1: 0.7789 - Accuracy: 0.9251 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.4805 | 0.4 | 500 | 0.4017 | 0.6644 | 0.7072 | 0.6852 | 0.8788 | | 0.3281 | 0.8 | 1000 | 0.2818 | 0.7416 | 0.7886 | 0.7644 | 0.9203 | | 0.165 | 1.2 | 1500 | 0.2653 | 0.7573 | 0.8023 | 0.7792 | 0.9244 | | 0.2539 | 1.6 | 2000 | 0.2633 | 0.7571 | 0.8040 | 0.7799 | 0.9252 | | 0.252 | 2.0 | 2500 | 0.2633 | 0.7560 | 0.8032 | 0.7789 | 0.9251 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1