whisper-base-en / README.md
dongim04's picture
End of training
e3b4e00 verified
|
raw
history blame
2.23 kB
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-base
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: whisper-base-en
    results: []

whisper-base-en

This model is a fine-tuned version of openai/whisper-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1362
  • Wer: 4.3516

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 3000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0146 0.4 100 0.1223 4.8708
0.0159 0.8 200 0.1248 4.8306
0.0104 1.2 300 0.1251 4.3803
0.01 1.6 400 0.1259 4.3975
0.0092 2.0 500 0.1263 4.4749
0.0055 2.4 600 0.1301 4.3344
0.0062 2.8 700 0.1303 4.4061
0.0039 3.2 800 0.1324 4.5294
0.0045 3.6 900 0.1337 4.3889
0.0036 4.0 1000 0.1350 4.2626
0.0033 4.4 1100 0.1358 4.3344
0.0033 4.8 1200 0.1362 4.3516

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3