--- library_name: transformers license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-base-en results: [] --- # whisper-base-en This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1142 - Wer: 3.7226 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.0667 | 0.3534 | 100 | 0.1267 | 4.8230 | | 0.0693 | 0.7067 | 200 | 0.1188 | 4.1087 | | 0.0614 | 1.0601 | 300 | 0.1133 | 3.7907 | | 0.0274 | 1.4134 | 400 | 0.1128 | 3.7503 | | 0.0365 | 1.7668 | 500 | 0.1113 | 3.8513 | | 0.014 | 2.1201 | 600 | 0.1106 | 3.7201 | | 0.0165 | 2.4735 | 700 | 0.1116 | 3.7352 | | 0.0137 | 2.8269 | 800 | 0.1096 | 3.6999 | | 0.007 | 3.1802 | 900 | 0.1114 | 3.6216 | | 0.007 | 3.5336 | 1000 | 0.1130 | 3.6317 | | 0.0077 | 3.8869 | 1100 | 0.1128 | 3.6645 | | 0.0056 | 4.2403 | 1200 | 0.1138 | 3.7302 | | 0.005 | 4.5936 | 1300 | 0.1142 | 3.7226 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3