--- library_name: transformers license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-base-en results: [] --- # whisper-base-en This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1362 - Wer: 4.3516 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 3000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0146 | 0.4 | 100 | 0.1223 | 4.8708 | | 0.0159 | 0.8 | 200 | 0.1248 | 4.8306 | | 0.0104 | 1.2 | 300 | 0.1251 | 4.3803 | | 0.01 | 1.6 | 400 | 0.1259 | 4.3975 | | 0.0092 | 2.0 | 500 | 0.1263 | 4.4749 | | 0.0055 | 2.4 | 600 | 0.1301 | 4.3344 | | 0.0062 | 2.8 | 700 | 0.1303 | 4.4061 | | 0.0039 | 3.2 | 800 | 0.1324 | 4.5294 | | 0.0045 | 3.6 | 900 | 0.1337 | 4.3889 | | 0.0036 | 4.0 | 1000 | 0.1350 | 4.2626 | | 0.0033 | 4.4 | 1100 | 0.1358 | 4.3344 | | 0.0033 | 4.8 | 1200 | 0.1362 | 4.3516 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3