File size: 6,290 Bytes
03a8782
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms, models
from torch.utils.data import DataLoader
import os
import copy
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torchvision.models import resnet50, ResNet50_Weights
import ssl
ssl._create_default_https_context = ssl._create_unverified_context

# data transformations with augmentation
train_transform = transforms.Compose([
    transforms.RandomResizedCrop(224),
    transforms.RandomHorizontalFlip(),
    transforms.RandomRotation(10),
    transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])

val_test_transform = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])


class ResNetLungCancer(nn.Module):
    def __init__(self, num_classes, use_pretrained=True):
        super(ResNetLungCancer, self).__init__()
        if use_pretrained:
            weights = ResNet50_Weights.IMAGENET1K_V1
        else:
            weights = None
        self.resnet = resnet50(weights=weights)
        num_ftrs = self.resnet.fc.in_features
        self.resnet.fc = nn.Identity()  # remove the final fully connected layer
        self.fc = nn.Sequential(
            nn.Linear(num_ftrs, 256),
            nn.ReLU(),
            nn.Dropout(0.5),
            nn.Linear(256, num_classes)
        )

    def forward(self, x):
        x = self.resnet(x)
        return self.fc(x)


# train function
def train_model(model, train_loader, valid_loader, criterion, optimizer, scheduler, num_epochs=50, device='cuda'):
    best_model_wts = copy.deepcopy(model.state_dict())
    best_acc = 0.0

    for epoch in range(num_epochs):
        print(f'Epoch {epoch}/{num_epochs - 1}')
        print('-' * 10)

        for phase in ['train', 'valid']:
            if phase == 'train':
                model.train()
                dataloader = train_loader
            else:
                model.eval()
                dataloader = valid_loader

            running_loss = 0.0
            running_corrects = 0

            for inputs, labels in dataloader:
                inputs = inputs.to(device)
                labels = labels.to(device)

                optimizer.zero_grad()

                with torch.set_grad_enabled(phase == 'train'):
                    outputs = model(inputs)
                    _, preds = torch.max(outputs, 1)
                    loss = criterion(outputs, labels)

                    if phase == 'train':
                        loss.backward()
                        optimizer.step()

                running_loss += loss.item() * inputs.size(0)
                running_corrects += torch.sum(preds == labels.data)

            epoch_loss = running_loss / len(dataloader.dataset)
            epoch_acc = running_corrects.double() / len(dataloader.dataset)

            print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')

            if phase == 'valid':
                scheduler.step(epoch_acc)
                current_lr = optimizer.param_groups[0]['lr']
                print(f'Learning rate: {current_lr}')
                if epoch_acc > best_acc:
                    best_acc = epoch_acc
                    best_model_wts = copy.deepcopy(model.state_dict())

        print()

    print(f'Best val Acc: {best_acc:.4f}')
    model.load_state_dict(best_model_wts)
    return model

# eval the model
def evaluate_model(model, test_loader, device='cuda'):
    model.eval()
    running_corrects = 0

    with torch.no_grad():
        for inputs, labels in test_loader:
            inputs = inputs.to(device)
            labels = labels.to(device)

            outputs = model(inputs)
            _, preds = torch.max(outputs, 1)
            running_corrects += torch.sum(preds == labels.data)

    test_acc = running_corrects.double() / len(test_loader.dataset)
    print(f'Test Acc: {test_acc:.4f}')

if __name__ == "__main__":
    # device
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print(f"Using device: {device}")

    # data
    data_dir = 'Processed_Data'
    train_dataset = datasets.ImageFolder(os.path.join(data_dir, 'train'), transform=train_transform)
    valid_dataset = datasets.ImageFolder(os.path.join(data_dir, 'valid'), transform=val_test_transform)
    test_dataset = datasets.ImageFolder(os.path.join(data_dir, 'test'), transform=val_test_transform)

    #  dataloaders
    batch_size = 32
    train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4)
    valid_loader = DataLoader(valid_dataset, batch_size=batch_size, shuffle=False, num_workers=4)
    test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=4)

    print(f"Number of training images: {len(train_dataset)}")
    print(f"Number of validation images: {len(valid_dataset)}")
    print(f"Number of test images: {len(test_dataset)}")

    # initialize model, loss, and optimizer
    num_classes = len(train_dataset.classes)
    model = ResNetLungCancer(num_classes)
    model = model.to(device)

    criterion = nn.CrossEntropyLoss()
    
    pretrained_params = list(model.resnet.parameters())
    new_params = list(model.fc.parameters())

    optimizer = optim.Adam([
        {'params': pretrained_params, 'lr': 1e-5},
        {'params': new_params, 'lr': 1e-4}
    ], weight_decay=1e-6)
    
    scheduler = ReduceLROnPlateau(optimizer, mode='max', factor=0.5, patience=7)

    # train the model
    trained_model = train_model(model, train_loader, valid_loader, criterion, optimizer, scheduler, num_epochs=50, device=device)

    # eval the model
    evaluate_model(trained_model, test_loader, device=device)

    # save the model weights
    torch.save(trained_model.state_dict(), 'lung_cancer_detection_model.pth')

    # save the model in ONNX format
    dummy_input = torch.randn(1, 3, 224, 224).to(device)
    torch.onnx.export(trained_model, dummy_input, "lung_cancer_detection_model.onnx", input_names=['input'], output_names=['output'])

    print("Training completed. Model saved.")