a2c-AntBulletEnv-v0 / config.json
draziert's picture
Initial commit
a9aabe3
raw
history blame
14.3 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcdea4e8670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcdea4e8700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcdea4e8790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcdea4e8820>", "_build": "<function ActorCriticPolicy._build at 0x7fcdea4e88b0>", "forward": "<function ActorCriticPolicy.forward at 0x7fcdea4e8940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fcdea4e89d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcdea4e8a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7fcdea4e8af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcdea4e8b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcdea4e8c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcdea4e8ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fcdea4ded80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690033410569728382, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMOJqL//f+a+Z46MPhfc6r6Q8bg9iOtPPt7h2D4ekd4+pQ5KPpdlJD79sx+/Rpo3PaDXgT4714K+TzuvPkQ6F71apIm/6rWLvQ1uVz88PSs+8W+Fv+nIar7bXD6/liAyPkXoID9AKac+GNnoPlPMbj+Ya6I/+owDQEzFI737sJk/iTngPvwZpb9/Hq8/MBBQv3N+pb/lQ0U+MwUWv8Abyb/69xo/BA5vQKxKnL/wobw/aJffPyCfCkBVeLk+DYsjv4szor/dFTZAAOgyP3W4mT8spcu/QCmnPhjZ6D5TzG4/Rh6zv9cq7z6D6i4/+LmRv47RAD8gQWs9MkhVPhVMHT7huKK/ta+sOlne0L4JR0m9BMa4Pa+cc73SEzg/57zhPIGUDj+JBGC8rKpBPzQ9jLzDvCq/it4RPAIoDb9ZDyG8ReggP0Appz4Y2eg+U8xuP8Nb3r7vPBG+WiH4PvQwH75hYJ0/ht2LPn9N4T1thE+/iCqIPgF/AcCV0ia+M6qyv4nJRL/jRII+SqM5P6+MiDuvAJa/s+dwPzPqqD+EqAy/tpw8vyOqv74YRdk+s25zvSyly79AKac+GNnoPlPMbj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAwWL61AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA2cLKPQAAAAA/GvC/AAAAAJ9BnD0AAAAAOaUAQAAAAADw/a09AAAAAO9y4z8AAAAAheL5PQAAAADI/eW/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAarnqtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgP4GpT0AAAAAqK3uvwAAAABO3Qe+AAAAAIcH8T8AAAAA28ClPAAAAAACo/c/AAAAACLk4T0AAAAA4MTcvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkdhzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDQfd28AAAAABrf9L8AAAAAwvKiPQAAAACl4N4/AAAAAGeui7wAAAAAv7n3PwAAAABLIKq9AAAAACLy878AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADL5N20AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA3vcpvQAAAACUz/m/AAAAAEsMKr0AAAAAJIDrPwAAAADTeu48AAAAALQ8/T8AAAAA8S83PQAAAABnR9m/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJQ+8jt5UtKMAWyUTegDjAF0lEdAqojhoK2KEXV9lChoBkdAk1/VAzHjqGgHTegDaAhHQKqS6mqHXVd1fZQoaAZHQJb02/Ho5ghoB03oA2gIR0Cqk4u2iL2pdX2UKGgGR0CVv/fg75mAaAdN6ANoCEdAqpS2cx0uDnV9lChoBkdAlLfPfTCtR2gHTegDaAhHQKqYQVvddmh1fZQoaAZHQJWMLfl6qsFoB03oA2gIR0Cqn/GA08/2dX2UKGgGR0CTj6jopx3naAdN6ANoCEdAqqCL9n9NvnV9lChoBkdAlyOFl5GBnWgHTegDaAhHQKqhrr1uivh1fZQoaAZHQJMrqMfigkFoB03oA2gIR0CqpSeaBqbjdX2UKGgGR0CUl9Z4fOlgaAdN6ANoCEdAqq87IPsiS3V9lChoBkdAk8wjHn2ZiWgHTegDaAhHQKqv2T+NtIl1fZQoaAZHQJV00Gkep4toB03oA2gIR0CqsPohQm/ndX2UKGgGR0CQDfc580DVaAdN6ANoCEdAqrRxQSBbwHV9lChoBkdAlEOwUYbbUWgHTegDaAhHQKq8QfOD8Lt1fZQoaAZHQJZLm08eS0VoB03oA2gIR0CqvORWcSXddX2UKGgGR0CWQ+rOZ9eAaAdN6ANoCEdAqr4GWIGhVXV9lChoBkdAlSwZ6dDpkmgHTegDaAhHQKrBfeHBUJh1fZQoaAZHQJdDwEwFkhBoB03oA2gIR0Cqy2iB5HEudX2UKGgGR0CVX7m78Nx3aAdN6ANoCEdAqswF+iJwbXV9lChoBkdAl0iVkc0cfmgHTegDaAhHQKrNJCwbEP11fZQoaAZHQJHSYp/gBLhoB03oA2gIR0Cq0JbrcCYDdX2UKGgGR0CaB6RiPQv6aAdN6ANoCEdAqthQ93bEgnV9lChoBkdAlUL1PN3W4GgHTegDaAhHQKrY8jmCAc11fZQoaAZHQJkUQfV7QcBoB03oA2gIR0Cq2hX8fmtAdX2UKGgGR0CVqmm1IAfdaAdN6ANoCEdAqt39l9SdfHV9lChoBkdAmPPZAIIF/2gHTegDaAhHQKrneVHFxXJ1fZQoaAZHQJZx1Dc/MW5oB03oA2gIR0Cq6B68xsVMdX2UKGgGR0CSF0d8zAN5aAdN6ANoCEdAqulA3HaN/HV9lChoBkdAlFbLeqJdjWgHTegDaAhHQKrsqDp1RtR1fZQoaAZHQJZ5x+EytV9oB03oA2gIR0Cq9Gofr8iwdX2UKGgGR0CVRpI3zcynaAdN6ANoCEdAqvUJWDHwPXV9lChoBkdAlWVzBZZB9mgHTegDaAhHQKr2JtMPBi11fZQoaAZHQJMN3j6vaDhoB03oA2gIR0Cq+nfu1F6SdX2UKGgGR0CRbIxkNFz/aAdN6ANoCEdAqwOTDKoybnV9lChoBkdAkOpSVObiImgHTegDaAhHQKsELk1dgOV1fZQoaAZHQJDZhmRNh3JoB03oA2gIR0CrBVGwJPZadX2UKGgGR0CSaUV9nbqRaAdN6ANoCEdAqwi50bLlm3V9lChoBkdAjyTpD/lyR2gHTegDaAhHQKsQivHLidd1fZQoaAZHQITOKyQgcLloB03oA2gIR0CrETfnnuAqdX2UKGgGR0CIMOBpYcNpaAdN6ANoCEdAqxJh1Tzd13V9lChoBkdAgP3VU+9rXWgHTegDaAhHQKsXUE6kqMF1fZQoaAZHQHiijdLxqfxoB03oA2gIR0CrH+4zJp35dX2UKGgGR0ByULhisny/aAdN6ANoCEdAqyCPpB5X2nV9lChoBkdAgkNWAoXsPmgHTegDaAhHQKshu0iyIHl1fZQoaAZHQIU5FDhLoOhoB03oA2gIR0CrJRwSamXPdX2UKGgGR0B/p2rGR3eOaAdN6ANoCEdAqyzYjps41nV9lChoBkdAh77hAOavzWgHTegDaAhHQKstf0TURWd1fZQoaAZHQI/lqtq59VpoB03oA2gIR0CrLxBrvb48dX2UKGgGR0CNDTMV1wHaaAdN6ANoCEdAqzQxmPHT7XV9lChoBkdAkXTdNet0WGgHTegDaAhHQKs8GMpgCwN1fZQoaAZHQJA+pOM2m51oB03oA2gIR0CrPLdRaX8gdX2UKGgGR0CSuFggow23aAdN6ANoCEdAqz3O938n/nV9lChoBkdAkIl+x4Y772gHTegDaAhHQKtBRdadMCd1fZQoaAZHQJBqvr2QGOdoB03oA2gIR0CrSSAOz6acdX2UKGgGR0CAEgir1dxAaAdN6ANoCEdAq0oCi48U23V9lChoBkdAgWwa+36RAGgHTegDaAhHQKtLqGlhw2l1fZQoaAZHQI16CLVFx4poB03oA2gIR0CrULJsGgSOdX2UKGgGR0CCMeHk92X+aAdN6ANoCEdAq1h+0zCUHXV9lChoBkdAi369gv114mgHTegDaAhHQKtZIoOQQtl1fZQoaAZHQICTAm1IAfdoB03oA2gIR0CrWkYGD+R6dX2UKGgGR0CIwRObAk9maAdN6ANoCEdAq1261NQCS3V9lChoBkdAhq/KISDh+GgHTegDaAhHQKtmGXMQmNR1fZQoaAZHQIL7W2mYSg5oB03oA2gIR0CrZv6AvtdBdX2UKGgGR0CK6Lvl2eQNaAdN6ANoCEdAq2izCxeLN3V9lChoBkdAhFOPhybQTmgHTegDaAhHQKttDFId2gZ1fZQoaAZHQIDv4bbUPQRoB03oA2gIR0CrdNOg6EJ0dX2UKGgGR0CIFiT4+KTCaAdN6ANoCEdAq3VvWDpTuXV9lChoBkdAhDpiFK02L2gHTegDaAhHQKt2jCeEqUh1fZQoaAZHQJJwEFr2xptoB03oA2gIR0Cree3JPqLTdX2UKGgGR0CVQkXBP9DQaAdN6ANoCEdAq4KeKMvRJHV9lChoBkdAloUG7SRbKWgHTegDaAhHQKuDhCyhSLt1fZQoaAZHQJN7c+A3DN1oB03oA2gIR0CrhUaYVqN7dX2UKGgGR0CTQ/EjgQ6IaAdN6ANoCEdAq4kQA+6iCnV9lChoBkdAlwwoBV+7UWgHTegDaAhHQKuQsqur6tV1fZQoaAZHQIXK6Cg9NetoB03oA2gIR0CrkU/e+Eh8dX2UKGgGR0CVjbyMUAT7aAdN6ANoCEdAq5J5yU9py3V9lChoBkdAlHhdv863iWgHTegDaAhHQKuV6pS75Ed1fZQoaAZHQJa+HlKbrkdoB03oA2gIR0CrnvhCD28JdX2UKGgGR0CWZvNZeRgaaAdN6ANoCEdAq5/pRyfcvnV9lChoBkdAjYko1DSgG2gHTegDaAhHQKuhnH/cWTJ1fZQoaAZHQJUoWOp84PxoB03oA2gIR0CrpR0mlZX/dX2UKGgGR0CV70M2FWXDaAdN6ANoCEdAq6zWm51/2HV9lChoBkdAlJVO3trsSmgHTegDaAhHQKutdsZYPoV1fZQoaAZHQJSVWANG3F1oB03oA2gIR0CrroveYUnHdX2UKGgGR0CVDH4uscQzaAdN6ANoCEdAq7HgHVwxWXV9lChoBkdAksWtdeIEbGgHTegDaAhHQKu7itvGZNR1fZQoaAZHQJCVyTaCcwxoB03oA2gIR0CrvHvbwjMWdX2UKGgGR0CV47OryUcGaAdN6ANoCEdAq72hvxYq5XV9lChoBkdAlBQitA9mpWgHTegDaAhHQKvBF2gWac91fZQoaAZHQIRY7qhUR4BoB03oA2gIR0CryOilSCOFdX2UKGgGR0CMmxRdhRZVaAdN6ANoCEdAq8mL0L+glHV9lChoBkdAjQSOB19v0mgHTegDaAhHQKvKrJkGzKN1fZQoaAZHQIrzmoBJZntoB03oA2gIR0CrzhKBNEgGdX2UKGgGR0CRC3naFmFraAdN6ANoCEdAq9llo11nunV9lChoBkdAhVmUkfLcK2gHTegDaAhHQKvaRD3ueBh1fZQoaAZHQJF4YUsWfshoB03oA2gIR0Cr2/fkvK2bdX2UKGgGR0CN7hiS7oStaAdN6ANoCEdAq9/bf51vEXV9lChoBkdAlm9O1rqMWGgHTegDaAhHQKvnhkWAPNF1fZQoaAZHQJVC+ys0YTFoB03oA2gIR0Cr6CaRp1zRdX2UKGgGR0CEQTU+cH4XaAdN6ANoCEdAq+lR2OhkAnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}