Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<div align="center">
|
2 |
+
|
3 |
+
<a href="https://www.youtube.com/watch?v=jlMAX2Oaht0">
|
4 |
+
<img width=560 width=315 alt="Making TGI deployment optimal" src="https://huggingface.co/datasets/Narsil/tgi_assets/resolve/main/thumbnail.png">
|
5 |
+
</a>
|
6 |
+
|
7 |
+
# Text Generation Inference
|
8 |
+
|
9 |
+
<a href="https://github.com/huggingface/text-generation-inference">
|
10 |
+
<img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/huggingface/text-generation-inference?style=social">
|
11 |
+
</a>
|
12 |
+
<a href="https://huggingface.github.io/text-generation-inference">
|
13 |
+
<img alt="Swagger API documentation" src="https://img.shields.io/badge/API-Swagger-informational">
|
14 |
+
</a>
|
15 |
+
|
16 |
+
A Rust, Python and gRPC server for text generation inference. Used in production at [HuggingFace](https://huggingface.co)
|
17 |
+
to power Hugging Chat, the Inference API and Inference Endpoint.
|
18 |
+
|
19 |
+
</div>
|
20 |
+
|
21 |
+
## Table of contents
|
22 |
+
|
23 |
+
- [Get Started](#get-started)
|
24 |
+
- [API Documentation](#api-documentation)
|
25 |
+
- [Using a private or gated model](#using-a-private-or-gated-model)
|
26 |
+
- [A note on Shared Memory](#a-note-on-shared-memory-shm)
|
27 |
+
- [Distributed Tracing](#distributed-tracing)
|
28 |
+
- [Local Install](#local-install)
|
29 |
+
- [CUDA Kernels](#cuda-kernels)
|
30 |
+
- [Optimized architectures](#optimized-architectures)
|
31 |
+
- [Run Mistral](#run-a-model)
|
32 |
+
- [Run](#run)
|
33 |
+
- [Quantization](#quantization)
|
34 |
+
- [Develop](#develop)
|
35 |
+
- [Testing](#testing)
|
36 |
+
|
37 |
+
Text Generation Inference (TGI) is a toolkit for deploying and serving Large Language Models (LLMs). TGI enables high-performance text generation for the most popular open-source LLMs, including Llama, Falcon, StarCoder, BLOOM, GPT-NeoX, and [more](https://huggingface.co/docs/text-generation-inference/supported_models). TGI implements many features, such as:
|
38 |
+
|
39 |
+
- Simple launcher to serve most popular LLMs
|
40 |
+
- Production ready (distributed tracing with Open Telemetry, Prometheus metrics)
|
41 |
+
- Tensor Parallelism for faster inference on multiple GPUs
|
42 |
+
- Token streaming using Server-Sent Events (SSE)
|
43 |
+
- Continuous batching of incoming requests for increased total throughput
|
44 |
+
- Optimized transformers code for inference using [Flash Attention](https://github.com/HazyResearch/flash-attention) and [Paged Attention](https://github.com/vllm-project/vllm) on the most popular architectures
|
45 |
+
- Quantization with :
|
46 |
+
- [bitsandbytes](https://github.com/TimDettmers/bitsandbytes)
|
47 |
+
- [GPT-Q](https://arxiv.org/abs/2210.17323)
|
48 |
+
- [EETQ](https://github.com/NetEase-FuXi/EETQ)
|
49 |
+
- [AWQ](https://github.com/casper-hansen/AutoAWQ)
|
50 |
+
- [Safetensors](https://github.com/huggingface/safetensors) weight loading
|
51 |
+
- Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)
|
52 |
+
- Logits warper (temperature scaling, top-p, top-k, repetition penalty, more details see [transformers.LogitsProcessor](https://huggingface.co/docs/transformers/internal/generation_utils#transformers.LogitsProcessor))
|
53 |
+
- Stop sequences
|
54 |
+
- Log probabilities
|
55 |
+
- [Speculation](https://huggingface.co/docs/text-generation-inference/conceptual/speculation) ~2x latency
|
56 |
+
- [Guidance/JSON](https://huggingface.co/docs/text-generation-inference/conceptual/guidance). Specify output format to speed up inference and make sure the output is valid according to some specs..
|
57 |
+
- Custom Prompt Generation: Easily generate text by providing custom prompts to guide the model's output
|
58 |
+
- Fine-tuning Support: Utilize fine-tuned models for specific tasks to achieve higher accuracy and performance
|
59 |
+
|
60 |
+
### Hardware support
|
61 |
+
|
62 |
+
- [Nvidia](https://github.com/huggingface/text-generation-inference/pkgs/container/text-generation-inference)
|
63 |
+
- [AMD](https://github.com/huggingface/text-generation-inference/pkgs/container/text-generation-inference) (-rocm)
|
64 |
+
- [Inferentia](https://github.com/huggingface/optimum-neuron/tree/main/text-generation-inference)
|
65 |
+
- [Intel GPU](https://github.com/huggingface/text-generation-inference/pull/1475)
|
66 |
+
- [Gaudi](https://github.com/huggingface/tgi-gaudi)
|
67 |
+
- [Google TPU](https://huggingface.co/docs/optimum-tpu/howto/serving)
|
68 |
+
|
69 |
+
|
70 |
+
## Get Started
|
71 |
+
|
72 |
+
### Docker
|
73 |
+
|
74 |
+
For a detailed starting guide, please see the [Quick Tour](https://huggingface.co/docs/text-generation-inference/quicktour). The easiest way of getting started is using the official Docker container:
|
75 |
+
|
76 |
+
```shell
|
77 |
+
model=HuggingFaceH4/zephyr-7b-beta
|
78 |
+
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
|
79 |
+
|
80 |
+
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:2.0 --model-id $model
|
81 |
+
```
|
82 |
+
|
83 |
+
And then you can make requests like
|
84 |
+
|
85 |
+
```bash
|
86 |
+
curl 127.0.0.1:8080/generate_stream \
|
87 |
+
-X POST \
|
88 |
+
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \
|
89 |
+
-H 'Content-Type: application/json'
|
90 |
+
```
|
91 |
+
|
92 |
+
**Note:** To use NVIDIA GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). We also recommend using NVIDIA drivers with CUDA version 12.2 or higher. For running the Docker container on a machine with no GPUs or CUDA support, it is enough to remove the `--gpus all` flag and add `--disable-custom-kernels`, please note CPU is not the intended platform for this project, so performance might be subpar.
|
93 |
+
|
94 |
+
**Note:** TGI supports AMD Instinct MI210 and MI250 GPUs. Details can be found in the [Supported Hardware documentation](https://huggingface.co/docs/text-generation-inference/supported_models#supported-hardware). To use AMD GPUs, please use `docker run --device /dev/kfd --device /dev/dri --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:2.0-rocm --model-id $model` instead of the command above.
|
95 |
+
|
96 |
+
To see all options to serve your models (in the [code](https://github.com/huggingface/text-generation-inference/blob/main/launcher/src/main.rs) or in the cli):
|
97 |
+
```
|
98 |
+
text-generation-launcher --help
|
99 |
+
```
|
100 |
+
|
101 |
+
### API documentation
|
102 |
+
|
103 |
+
You can consult the OpenAPI documentation of the `text-generation-inference` REST API using the `/docs` route.
|
104 |
+
The Swagger UI is also available at: [https://huggingface.github.io/text-generation-inference](https://huggingface.github.io/text-generation-inference).
|
105 |
+
|
106 |
+
### Using a private or gated model
|
107 |
+
|
108 |
+
You have the option to utilize the `HUGGING_FACE_HUB_TOKEN` environment variable for configuring the token employed by
|
109 |
+
`text-generation-inference`. This allows you to gain access to protected resources.
|
110 |
+
|
111 |
+
For example, if you want to serve the gated Llama V2 model variants:
|
112 |
+
|
113 |
+
1. Go to https://huggingface.co/settings/tokens
|
114 |
+
2. Copy your cli READ token
|
115 |
+
3. Export `HUGGING_FACE_HUB_TOKEN=<your cli READ token>`
|
116 |
+
|
117 |
+
or with Docker:
|
118 |
+
|
119 |
+
```shell
|
120 |
+
model=meta-llama/Llama-2-7b-chat-hf
|
121 |
+
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
|
122 |
+
token=<your cli READ token>
|
123 |
+
|
124 |
+
docker run --gpus all --shm-size 1g -e HUGGING_FACE_HUB_TOKEN=$token -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:2.0 --model-id $model
|
125 |
+
```
|
126 |
+
|
127 |
+
### A note on Shared Memory (shm)
|
128 |
+
|
129 |
+
[`NCCL`](https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html) is a communication framework used by
|
130 |
+
`PyTorch` to do distributed training/inference. `text-generation-inference` make
|
131 |
+
use of `NCCL` to enable Tensor Parallelism to dramatically speed up inference for large language models.
|
132 |
+
|
133 |
+
In order to share data between the different devices of a `NCCL` group, `NCCL` might fall back to using the host memory if
|
134 |
+
peer-to-peer using NVLink or PCI is not possible.
|
135 |
+
|
136 |
+
To allow the container to use 1G of Shared Memory and support SHM sharing, we add `--shm-size 1g` on the above command.
|
137 |
+
|
138 |
+
If you are running `text-generation-inference` inside `Kubernetes`. You can also add Shared Memory to the container by
|
139 |
+
creating a volume with:
|
140 |
+
|
141 |
+
```yaml
|
142 |
+
- name: shm
|
143 |
+
emptyDir:
|
144 |
+
medium: Memory
|
145 |
+
sizeLimit: 1Gi
|
146 |
+
```
|
147 |
+
|
148 |
+
and mounting it to `/dev/shm`.
|
149 |
+
|
150 |
+
Finally, you can also disable SHM sharing by using the `NCCL_SHM_DISABLE=1` environment variable. However, note that
|
151 |
+
this will impact performance.
|
152 |
+
|
153 |
+
### Distributed Tracing
|
154 |
+
|
155 |
+
`text-generation-inference` is instrumented with distributed tracing using OpenTelemetry. You can use this feature
|
156 |
+
by setting the address to an OTLP collector with the `--otlp-endpoint` argument.
|
157 |
+
|
158 |
+
### Architecture
|
159 |
+
|
160 |
+
![TGI architecture](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/TGI.png)
|
161 |
+
|
162 |
+
### Local install
|
163 |
+
|
164 |
+
You can also opt to install `text-generation-inference` locally.
|
165 |
+
|
166 |
+
First [install Rust](https://rustup.rs/) and create a Python virtual environment with at least
|
167 |
+
Python 3.9, e.g. using `conda`:
|
168 |
+
|
169 |
+
```shell
|
170 |
+
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
|
171 |
+
|
172 |
+
conda create -n text-generation-inference python=3.11
|
173 |
+
conda activate text-generation-inference
|
174 |
+
```
|
175 |
+
|
176 |
+
You may also need to install Protoc.
|
177 |
+
|
178 |
+
On Linux:
|
179 |
+
|
180 |
+
```shell
|
181 |
+
PROTOC_ZIP=protoc-21.12-linux-x86_64.zip
|
182 |
+
curl -OL https://github.com/protocolbuffers/protobuf/releases/download/v21.12/$PROTOC_ZIP
|
183 |
+
sudo unzip -o $PROTOC_ZIP -d /usr/local bin/protoc
|
184 |
+
sudo unzip -o $PROTOC_ZIP -d /usr/local 'include/*'
|
185 |
+
rm -f $PROTOC_ZIP
|
186 |
+
```
|
187 |
+
|
188 |
+
On MacOS, using Homebrew:
|
189 |
+
|
190 |
+
```shell
|
191 |
+
brew install protobuf
|
192 |
+
```
|
193 |
+
|
194 |
+
Then run:
|
195 |
+
|
196 |
+
```shell
|
197 |
+
BUILD_EXTENSIONS=True make install # Install repository and HF/transformer fork with CUDA kernels
|
198 |
+
text-generation-launcher --model-id mistralai/Mistral-7B-Instruct-v0.2
|
199 |
+
```
|
200 |
+
|
201 |
+
**Note:** on some machines, you may also need the OpenSSL libraries and gcc. On Linux machines, run:
|
202 |
+
|
203 |
+
```shell
|
204 |
+
sudo apt-get install libssl-dev gcc -y
|
205 |
+
```
|
206 |
+
|
207 |
+
## Optimized architectures
|
208 |
+
|
209 |
+
TGI works out of the box to serve optimized models for all modern models. They can be found in [this list](https://huggingface.co/docs/text-generation-inference/supported_models).
|
210 |
+
|
211 |
+
Other architectures are supported on a best-effort basis using:
|
212 |
+
|
213 |
+
`AutoModelForCausalLM.from_pretrained(<model>, device_map="auto")`
|
214 |
+
|
215 |
+
or
|
216 |
+
|
217 |
+
`AutoModelForSeq2SeqLM.from_pretrained(<model>, device_map="auto")`
|
218 |
+
|
219 |
+
|
220 |
+
|
221 |
+
## Run locally
|
222 |
+
|
223 |
+
### Run
|
224 |
+
|
225 |
+
```shell
|
226 |
+
text-generation-launcher --model-id mistralai/Mistral-7B-Instruct-v0.2
|
227 |
+
```
|
228 |
+
|
229 |
+
### Quantization
|
230 |
+
|
231 |
+
You can also quantize the weights with bitsandbytes to reduce the VRAM requirement:
|
232 |
+
|
233 |
+
```shell
|
234 |
+
text-generation-launcher --model-id mistralai/Mistral-7B-Instruct-v0.2 --quantize
|
235 |
+
```
|
236 |
+
|
237 |
+
4bit quantization is available using the [NF4 and FP4 data types from bitsandbytes](https://arxiv.org/pdf/2305.14314.pdf). It can be enabled by providing `--quantize bitsandbytes-nf4` or `--quantize bitsandbytes-fp4` as a command line argument to `text-generation-launcher`.
|
238 |
+
|
239 |
+
## Develop
|
240 |
+
|
241 |
+
```shell
|
242 |
+
make server-dev
|
243 |
+
make router-dev
|
244 |
+
```
|
245 |
+
|
246 |
+
## Testing
|
247 |
+
|
248 |
+
```shell
|
249 |
+
# python
|
250 |
+
make python-server-tests
|
251 |
+
make python-client-tests
|
252 |
+
# or both server and client tests
|
253 |
+
make python-tests
|
254 |
+
# rust cargo tests
|
255 |
+
make rust-tests
|
256 |
+
# integration tests
|
257 |
+
make integration-tests
|
258 |
+
```
|