Update README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,11 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
# Model Card for Model ID
|
@@ -35,7 +40,47 @@ This is the model card of a ๐ค transformers model that has been pushed on the
|
|
35 |
|
36 |
## Uses
|
37 |
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
### Direct Use
|
41 |
|
@@ -83,7 +128,9 @@ Use the code below to get started with the model.
|
|
83 |
|
84 |
### Training Procedure
|
85 |
|
86 |
-
|
|
|
|
|
87 |
|
88 |
#### Preprocessing [optional]
|
89 |
|
@@ -92,7 +139,12 @@ Use the code below to get started with the model.
|
|
92 |
|
93 |
#### Training Hyperparameters
|
94 |
|
95 |
-
-
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
#### Speeds, Sizes, Times [optional]
|
98 |
|
@@ -120,9 +172,15 @@ Use the code below to get started with the model.
|
|
120 |
|
121 |
#### Metrics
|
122 |
|
123 |
-
|
124 |
|
125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
### Results
|
128 |
|
@@ -134,8 +192,6 @@ Use the code below to get started with the model.
|
|
134 |
|
135 |
## Model Examination [optional]
|
136 |
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
[More Information Needed]
|
140 |
|
141 |
## Environmental Impact
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
datasets:
|
4 |
+
- daekeun-ml/naver-news-summarization-ko
|
5 |
+
language:
|
6 |
+
- ko
|
7 |
+
base_model:
|
8 |
+
- google/gemma-2-9b-it
|
9 |
---
|
10 |
|
11 |
# Model Card for Model ID
|
|
|
40 |
|
41 |
## Uses
|
42 |
|
43 |
+
```python
|
44 |
+
from peft import PeftModel
|
45 |
+
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
46 |
+
|
47 |
+
MODEL_ID = "google/gemma-2-9b-it"
|
48 |
+
PEFT_MODEL_ID = "drlee1/gemma2-9b-it-qdora-summary"
|
49 |
+
|
50 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, device_map = 'auto', torch_dtype = torch.float16)
|
51 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
52 |
+
|
53 |
+
model = PeftModel.from_pretrained(model, PEFT_MODEL_ID, device_map = 'auto', torch_dtype = torch.float16)
|
54 |
+
|
55 |
+
pipe = pipeline("text-generation", model = model, tokenizer = tokenizer, max_new_tokens = 512)
|
56 |
+
|
57 |
+
doc = "..."
|
58 |
+
|
59 |
+
messages = [
|
60 |
+
{"role": "user", "content": "๋ค์ ๊ธ์ ์์ฝํด์ฃผ์ธ์:\n\n{}".format(doc)}
|
61 |
+
]
|
62 |
+
|
63 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize = False, add_generation_prompt = True)
|
64 |
+
|
65 |
+
outputs = pipe(
|
66 |
+
prompt,
|
67 |
+
do_sample = True,
|
68 |
+
temperature = .2,
|
69 |
+
top_k = 50,
|
70 |
+
top_p = .95,
|
71 |
+
add_special_tokens = True
|
72 |
+
)
|
73 |
+
|
74 |
+
print(outputs[0]['generated_text'][len(prompt):])
|
75 |
+
```
|
76 |
+
|
77 |
+
### Template
|
78 |
+
|
79 |
+
```text
|
80 |
+
# chat template
|
81 |
+
<bos><start_of_turn>user\n๋ค์ ๊ธ์ ์์ฝํด์ฃผ์ธ์:\n\n{data}<end_of_turn>\n<start_of_turn>model\n{label}
|
82 |
+
```
|
83 |
+
|
84 |
|
85 |
### Direct Use
|
86 |
|
|
|
128 |
|
129 |
### Training Procedure
|
130 |
|
131 |
+
- SFT
|
132 |
+
- Quantization
|
133 |
+
- DoRA
|
134 |
|
135 |
#### Preprocessing [optional]
|
136 |
|
|
|
139 |
|
140 |
#### Training Hyperparameters
|
141 |
|
142 |
+
- per_device_train_batch_size: 2
|
143 |
+
- gradient_accumulation_steps: 4
|
144 |
+
- optimization: paged_adamw_8bit
|
145 |
+
- lr: 2e-4
|
146 |
+
- bf16: True
|
147 |
+
- max_steps: 500
|
148 |
|
149 |
#### Speeds, Sizes, Times [optional]
|
150 |
|
|
|
172 |
|
173 |
#### Metrics
|
174 |
|
175 |
+
- Training Loss
|
176 |
|
177 |
+
| Step | Training Loss |
|
178 |
+
| --- | --- |
|
179 |
+
|100 |1.528100 |
|
180 |
+
|200 |1.409400 |
|
181 |
+
|300 |1.372800 |
|
182 |
+
|400 |1.325900 |
|
183 |
+
|500 |1.341600 |
|
184 |
|
185 |
### Results
|
186 |
|
|
|
192 |
|
193 |
## Model Examination [optional]
|
194 |
|
|
|
|
|
195 |
[More Information Needed]
|
196 |
|
197 |
## Environmental Impact
|