--- library_name: transformers datasets: - daekeun-ml/naver-news-summarization-ko language: - ko base_model: - google/gemma-2-9b-it tags: - DoRA - summary --- # Model Card for Model ID ## Model Details ### Model Description This is the model card of a šŸ¤— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses ```python from peft import PeftModel from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer MODEL_ID = "google/gemma-2-9b-it" PEFT_MODEL_ID = "drlee1/gemma2-9b-it-qdora-summary" model = AutoModelForCausalLM.from_pretrained(MODEL_ID, device_map = 'auto', torch_dtype = torch.float16) tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) model = PeftModel.from_pretrained(model, PEFT_MODEL_ID, device_map = 'auto', torch_dtype = torch.float16) pipe = pipeline("text-generation", model = model, tokenizer = tokenizer, max_new_tokens = 512) doc = "..." messages = [ {"role": "user", "content": "ė‹¤ģŒ źø€ģ„ ģš”ģ•½ķ•“ģ£¼ģ„øģš”:\n\n{}".format(doc)} ] prompt = tokenizer.apply_chat_template(messages, tokenize = False, add_generation_prompt = True) outputs = pipe( prompt, do_sample = True, temperature = .2, top_k = 50, top_p = .95, add_special_tokens = True ) print(outputs[0]['generated_text'][len(prompt):]) ``` ### Template ```text # chat template user\nė‹¤ģŒ źø€ģ„ ģš”ģ•½ķ•“ģ£¼ģ„øģš”:\n\n{data}\nmodel\n{label} ``` ### Direct Use [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure - SFT - Quantization - DoRA #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - per_device_train_batch_size: 2 - gradient_accumulation_steps: 4 - optimization: paged_adamw_8bit - lr: 2e-4 - bf16: True - max_steps: 500 #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics - Training Loss | Step | Training Loss | | --- | --- | |100 |1.528100 | |200 |1.409400 | |300 |1.372800 | |400 |1.325900 | |500 |1.341600 | ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]