Text Classification
Transformers
Safetensors
bert
lid
Language Identification
African Languages
Inference Endpoints
za-lid-bert / README.md
vukosi's picture
Update README.md
ac14e22 verified
---
license: cc-by-sa-4.0
language:
- ts
- nr
- ve
- xh
- zu
- af
- en
- st
- ss
- nso
- tn
library_name: transformers
pipeline_tag: text-classification
datasets:
- dsfsi/vukuzenzele-monolingual
metrics:
- accuracy
tags:
- lid
- Language Identification
- African Languages
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** Thapelo Sindane, Vukosi Marivate
- **Shared by [optional]:** DSFSI
- **Model type:** BERT
- **Language(s) (NLP):** Sepedi (nso), Sesotho(sot), Setswana(tsn), Xitsonga(tso), Isindebele(nr), Tshivenda(ven), IsiXhosa(xho), IsiZulu(zul), IsiSwati(ssw), Afrikaans(af), and English(en)
- **License:** CC-BY-SA
- **Finetuned from model [optional]:** N/A
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
Models must be used for language identification of the South African languages identified above
### Direct Use
LID for low-resourced languages
### Downstream Use [optional]
Language data filtering and identification
[More Information Needed]
### Out-of-Scope Use
Language detection in code-switched data.
[More Information Needed]
## Bias, Risks, and Limitations
Requires GPU to run fast
[More Information Needed]
### Recommendations
Do not use for sensitive tasks. Model at an infant stage.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
The source data used to train the model came from the paper 'Preparing Vuk...' referenced below:
* Lastrucci, R., Dzingirai, I., Rajab, J., Madodonga, A., Shingange, M., Njini, D. and Marivate, V., 2023. Preparing the Vuk'uzenzele and ZA-gov-multilingual South African multilingual corpora. arXiv preprint arXiv:2303.03750.
Number of sentences in datasets:
'nso': 5007,
'tsn': 4851,
'sot': 5075,
'xho': 5219,
'zul': 5103,
'nbl': 5600,
'ssw': 5210,
'ven': 5119,
'tso': 5193,
'af': 5252,
'eng': 5552
Train Test split: Train: 70% of minimum, 15% of minimum size, Dev: remaining sample
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]