File size: 1,850 Bytes
466f3e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: 16class_11k_newtest_xlm_roberta_base_25nov_v2_8epoch
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 16class_11k_newtest_xlm_roberta_base_25nov_v2_8epoch

This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1142
- Accuracy: 0.9706

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.7244        | 1.0   | 826  | 0.6693          | 0.8036   |
| 0.6119        | 2.0   | 1652 | 0.4189          | 0.8734   |
| 0.5004        | 3.0   | 2478 | 0.3088          | 0.9141   |
| 0.3626        | 4.0   | 3304 | 0.2287          | 0.9339   |
| 0.2776        | 5.0   | 4130 | 0.1735          | 0.9513   |
| 0.2445        | 6.0   | 4956 | 0.1446          | 0.9606   |
| 0.1944        | 7.0   | 5782 | 0.1192          | 0.9682   |
| 0.1633        | 8.0   | 6608 | 0.1142          | 0.9706   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0