File size: 2,675 Bytes
16f3b65
1df10b6
16f3b65
 
 
 
 
 
 
 
a8b0ee6
 
 
 
 
16f3b65
 
 
 
 
 
 
681b0a8
16f3b65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8b0ee6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: mit
base_model: facebook/bart-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: train-bart-base
  results: []
datasets:
- knkarthick/dialogsum
language:
- en
pipeline_tag: summarization
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# train-bart-base

This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on [knkarthick/dialogsum](https://huggingface.co/datasets/knkarthick/dialogsum) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2710
- Rouge1: 42.8665
- Rouge2: 21.8559
- Rougel: 37.536
- Rougelsum: 39.3725
- Gen Len: 18.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 0.3316        | 1.0   | 1557  | 0.2421          | 41.223  | 19.5022 | 35.5882 | 38.1294   | 18.0    |
| 0.2448        | 2.0   | 3115  | 0.2304          | 41.9635 | 20.5356 | 36.729  | 38.7748   | 18.0    |
| 0.2088        | 3.0   | 4672  | 0.2317          | 41.1639 | 20.168  | 35.9644 | 38.0607   | 18.0    |
| 0.1811        | 4.0   | 6230  | 0.2352          | 42.5001 | 21.4806 | 37.0514 | 39.0242   | 18.0    |
| 0.1591        | 5.0   | 7787  | 0.2422          | 42.148  | 20.9001 | 36.7976 | 38.6102   | 18.0    |
| 0.1399        | 6.0   | 9345  | 0.2465          | 42.1862 | 21.1403 | 36.7742 | 38.7401   | 18.0    |
| 0.1247        | 7.0   | 10902 | 0.2535          | 42.8571 | 21.998  | 37.6668 | 39.5963   | 18.0    |
| 0.1115        | 8.0   | 12460 | 0.2609          | 42.2841 | 21.1273 | 36.9562 | 38.9423   | 18.0    |
| 0.1019        | 9.0   | 14017 | 0.2677          | 42.8866 | 21.6628 | 37.5422 | 39.4627   | 18.0    |
| 0.0946        | 10.0  | 15570 | 0.2710          | 42.8665 | 21.8559 | 37.536  | 39.3725   | 18.0    |


### Framework versions

- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.19.1
- Tokenizers 0.15.2