|
--- |
|
language: |
|
- en |
|
base_model: google-t5/t5-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- glue |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: MRPC |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: GLUE MRPC |
|
type: glue |
|
args: mrpc |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8970588235294118 |
|
- name: F1 |
|
type: f1 |
|
value: 0.926829268292683 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# MRPC |
|
|
|
This model is a fine-tuned version of [google-t5/t5-base](https://huggingface.co/google-t5/t5-base) on the GLUE MRPC dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5629 |
|
- Accuracy: 0.8971 |
|
- F1: 0.9268 |
|
- Combined Score: 0.9119 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Accuracy | Combined Score | F1 | Validation Loss | |
|
|:-------------:|:-----:|:----:|:--------:|:--------------:|:------:|:---------------:| |
|
| No log | 1.0 | 115 | 0.7108 | 0.7671 | 0.8234 | 0.5476 | |
|
| No log | 2.0 | 230 | 0.8701 | 0.8901 | 0.9100 | 0.3523 | |
|
| No log | 3.0 | 345 | 0.8725 | 0.8924 | 0.9122 | 0.3624 | |
|
| No log | 4.0 | 460 | 0.8775 | 0.8949 | 0.9123 | 0.3646 | |
|
| 0.3744 | 5.0 | 575 | 0.8946 | 0.9099 | 0.9252 | 0.4054 | |
|
| 0.3744 | 6.0 | 690 | 0.8897 | 0.9057 | 0.9217 | 0.4624 | |
|
| 0.3744 | 7.0 | 805 | 0.5530 | 0.8873 | 0.9212 | 0.9042 | |
|
| 0.3744 | 8.0 | 920 | 0.5405 | 0.8897 | 0.9220 | 0.9059 | |
|
| 0.0877 | 9.0 | 1035 | 0.5629 | 0.8971 | 0.9268 | 0.9119 | |
|
| 0.0877 | 10.0 | 1150 | 0.5856 | 0.8922 | 0.9241 | 0.9081 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.43.3 |
|
- Pytorch 1.11.0+cu113 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|