ductai199x
commited on
Commit
·
0f0c271
1
Parent(s):
fc63316
add modeling file
Browse files- .gitignore +1 -0
- modeling_sam_hq_vit_huge.py +1546 -0
- preprocessor_config.json +28 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
**__pycache__**
|
modeling_sam_hq_vit_huge.py
ADDED
@@ -0,0 +1,1546 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The Meta AI Authors and The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch SAM model."""
|
16 |
+
|
17 |
+
import collections
|
18 |
+
import math
|
19 |
+
from dataclasses import dataclass
|
20 |
+
from typing import Dict, List, Optional, Tuple, Union
|
21 |
+
|
22 |
+
import numpy as np
|
23 |
+
import torch
|
24 |
+
import torch.nn.functional as F
|
25 |
+
import torch.utils.checkpoint
|
26 |
+
from torch import Tensor, nn
|
27 |
+
|
28 |
+
from transformers.activations import ACT2FN
|
29 |
+
from transformers.modeling_outputs import BaseModelOutput
|
30 |
+
from transformers.modeling_utils import PreTrainedModel
|
31 |
+
from transformers.utils import (
|
32 |
+
ModelOutput,
|
33 |
+
add_start_docstrings,
|
34 |
+
add_start_docstrings_to_model_forward,
|
35 |
+
logging,
|
36 |
+
)
|
37 |
+
from transformers.models.sam.configuration_sam import SamConfig, SamMaskDecoderConfig, SamPromptEncoderConfig, SamVisionConfig
|
38 |
+
|
39 |
+
|
40 |
+
logger = logging.get_logger(__name__)
|
41 |
+
|
42 |
+
_CONFIG_FOR_DOC = "SamConfig"
|
43 |
+
_CHECKPOINT_FOR_DOC = "facebook/sam-vit-huge"
|
44 |
+
|
45 |
+
|
46 |
+
@dataclass
|
47 |
+
class SamVisionEncoderOutput(ModelOutput):
|
48 |
+
"""
|
49 |
+
Base class for sam vision model's outputs that also contains image embeddings obtained by applying the projection
|
50 |
+
layer to the pooler_output.
|
51 |
+
|
52 |
+
Args:
|
53 |
+
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
|
54 |
+
The image embeddings obtained by applying the projection layer to the pooler_output.
|
55 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
56 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
57 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
58 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
59 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
60 |
+
|
61 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
62 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
63 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
64 |
+
sequence_length)`.
|
65 |
+
|
66 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
67 |
+
heads.
|
68 |
+
"""
|
69 |
+
|
70 |
+
image_embeds: Optional[torch.FloatTensor] = None
|
71 |
+
last_hidden_state: torch.FloatTensor = None
|
72 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
73 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
74 |
+
|
75 |
+
|
76 |
+
@dataclass
|
77 |
+
class SamImageSegmentationOutput(ModelOutput):
|
78 |
+
"""
|
79 |
+
Base class for Segment-Anything model's output
|
80 |
+
|
81 |
+
Args:
|
82 |
+
iou_scores (`torch.FloatTensor` of shape `(batch_size, num_masks)`):
|
83 |
+
The iou scores of the predicted masks.
|
84 |
+
pred_masks (`torch.FloatTensor` of shape `(batch_size, num_masks, height, width)`):
|
85 |
+
The predicted low resolutions masks. Needs to be post-processed by the processor
|
86 |
+
vision_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
87 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
88 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
89 |
+
|
90 |
+
Hidden-states of the vision model at the output of each layer plus the optional initial embedding outputs.
|
91 |
+
vision_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
92 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
93 |
+
sequence_length)`.
|
94 |
+
|
95 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
96 |
+
heads.
|
97 |
+
mask_decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
98 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
99 |
+
sequence_length)`.
|
100 |
+
|
101 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
102 |
+
heads.
|
103 |
+
"""
|
104 |
+
|
105 |
+
iou_scores: torch.FloatTensor = None
|
106 |
+
pred_masks: torch.FloatTensor = None
|
107 |
+
vision_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
108 |
+
vision_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
109 |
+
mask_decoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
110 |
+
|
111 |
+
|
112 |
+
class SamPatchEmbeddings(nn.Module):
|
113 |
+
"""
|
114 |
+
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
|
115 |
+
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
|
116 |
+
Transformer.
|
117 |
+
"""
|
118 |
+
|
119 |
+
def __init__(self, config):
|
120 |
+
super().__init__()
|
121 |
+
image_size, patch_size = config.image_size, config.patch_size
|
122 |
+
num_channels, hidden_size = config.num_channels, config.hidden_size
|
123 |
+
image_size = (
|
124 |
+
image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
|
125 |
+
)
|
126 |
+
patch_size = (
|
127 |
+
patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
|
128 |
+
)
|
129 |
+
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
|
130 |
+
self.image_size = image_size
|
131 |
+
self.patch_size = patch_size
|
132 |
+
self.num_channels = num_channels
|
133 |
+
self.num_patches = num_patches
|
134 |
+
|
135 |
+
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
|
136 |
+
|
137 |
+
def forward(self, pixel_values):
|
138 |
+
batch_size, num_channels, height, width = pixel_values.shape
|
139 |
+
if num_channels != self.num_channels:
|
140 |
+
raise ValueError(
|
141 |
+
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
|
142 |
+
)
|
143 |
+
if height != self.image_size[0] or width != self.image_size[1]:
|
144 |
+
raise ValueError(
|
145 |
+
f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})."
|
146 |
+
)
|
147 |
+
embeddings = self.projection(pixel_values).permute(0, 2, 3, 1)
|
148 |
+
return embeddings
|
149 |
+
|
150 |
+
|
151 |
+
class SamMLPBlock(nn.Module):
|
152 |
+
def __init__(self, config):
|
153 |
+
super().__init__()
|
154 |
+
self.lin1 = nn.Linear(config.hidden_size, config.mlp_dim)
|
155 |
+
self.lin2 = nn.Linear(config.mlp_dim, config.hidden_size)
|
156 |
+
self.act = ACT2FN[config.hidden_act]
|
157 |
+
|
158 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
159 |
+
hidden_states = self.lin1(hidden_states)
|
160 |
+
hidden_states = self.act(hidden_states)
|
161 |
+
hidden_states = self.lin2(hidden_states)
|
162 |
+
return hidden_states
|
163 |
+
|
164 |
+
|
165 |
+
# Copied from transformers.models.convnext.modeling_convnext.ConvNextLayerNorm with ConvNext->Sam
|
166 |
+
class SamLayerNorm(nn.Module):
|
167 |
+
r"""LayerNorm that supports two data formats: channels_last (default) or channels_first.
|
168 |
+
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height,
|
169 |
+
width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width).
|
170 |
+
"""
|
171 |
+
|
172 |
+
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
|
173 |
+
super().__init__()
|
174 |
+
self.weight = nn.Parameter(torch.ones(normalized_shape))
|
175 |
+
self.bias = nn.Parameter(torch.zeros(normalized_shape))
|
176 |
+
self.eps = eps
|
177 |
+
self.data_format = data_format
|
178 |
+
if self.data_format not in ["channels_last", "channels_first"]:
|
179 |
+
raise NotImplementedError(f"Unsupported data format: {self.data_format}")
|
180 |
+
self.normalized_shape = (normalized_shape,)
|
181 |
+
|
182 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
183 |
+
if self.data_format == "channels_last":
|
184 |
+
x = torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
|
185 |
+
elif self.data_format == "channels_first":
|
186 |
+
input_dtype = x.dtype
|
187 |
+
x = x.float()
|
188 |
+
u = x.mean(1, keepdim=True)
|
189 |
+
s = (x - u).pow(2).mean(1, keepdim=True)
|
190 |
+
x = (x - u) / torch.sqrt(s + self.eps)
|
191 |
+
x = x.to(dtype=input_dtype)
|
192 |
+
x = self.weight[:, None, None] * x + self.bias[:, None, None]
|
193 |
+
return x
|
194 |
+
|
195 |
+
|
196 |
+
class SamAttention(nn.Module):
|
197 |
+
"""
|
198 |
+
SAM's attention layer that allows for downscaling the size of the embedding after projection to queries, keys, and
|
199 |
+
values.
|
200 |
+
"""
|
201 |
+
|
202 |
+
def __init__(self, config, downsample_rate=None):
|
203 |
+
super().__init__()
|
204 |
+
self.hidden_size = config.hidden_size
|
205 |
+
|
206 |
+
downsample_rate = config.attention_downsample_rate if downsample_rate is None else downsample_rate
|
207 |
+
|
208 |
+
self.internal_dim = config.hidden_size // downsample_rate
|
209 |
+
self.num_attention_heads = config.num_attention_heads
|
210 |
+
if self.internal_dim % config.num_attention_heads != 0:
|
211 |
+
raise ValueError("num_attention_heads must divide hidden_size.")
|
212 |
+
|
213 |
+
self.q_proj = nn.Linear(self.hidden_size, self.internal_dim)
|
214 |
+
self.k_proj = nn.Linear(self.hidden_size, self.internal_dim)
|
215 |
+
self.v_proj = nn.Linear(self.hidden_size, self.internal_dim)
|
216 |
+
self.out_proj = nn.Linear(self.internal_dim, self.hidden_size)
|
217 |
+
|
218 |
+
def _separate_heads(self, hidden_states: Tensor, num_attention_heads: int) -> Tensor:
|
219 |
+
batch, point_batch_size, n_tokens, channel = hidden_states.shape
|
220 |
+
c_per_head = channel // num_attention_heads
|
221 |
+
hidden_states = hidden_states.reshape(
|
222 |
+
batch * point_batch_size, n_tokens, num_attention_heads, c_per_head
|
223 |
+
)
|
224 |
+
return hidden_states.transpose(1, 2)
|
225 |
+
|
226 |
+
def _recombine_heads(self, hidden_states: Tensor, point_batch_size: int) -> Tensor:
|
227 |
+
batch, n_heads, n_tokens, c_per_head = hidden_states.shape
|
228 |
+
hidden_states = hidden_states.transpose(1, 2)
|
229 |
+
return hidden_states.reshape(
|
230 |
+
batch // point_batch_size, point_batch_size, n_tokens, n_heads * c_per_head
|
231 |
+
)
|
232 |
+
|
233 |
+
def forward(
|
234 |
+
self, query: Tensor, key: Tensor, value: Tensor, attention_similarity: Tensor = None
|
235 |
+
) -> Tensor:
|
236 |
+
# Input projections
|
237 |
+
query = self.q_proj(query)
|
238 |
+
key = self.k_proj(key)
|
239 |
+
value = self.v_proj(value)
|
240 |
+
|
241 |
+
point_batch_size = query.shape[1]
|
242 |
+
# Separate into heads
|
243 |
+
query = self._separate_heads(query, self.num_attention_heads)
|
244 |
+
key = self._separate_heads(key, self.num_attention_heads)
|
245 |
+
value = self._separate_heads(value, self.num_attention_heads)
|
246 |
+
|
247 |
+
# SamAttention
|
248 |
+
_, _, _, c_per_head = query.shape
|
249 |
+
attn = query @ key.permute(
|
250 |
+
0, 1, 3, 2
|
251 |
+
) # batch_size * point_batch_size x N_heads x N_tokens x N_tokens
|
252 |
+
attn = attn / math.sqrt(c_per_head)
|
253 |
+
attn = torch.softmax(attn, dim=-1)
|
254 |
+
|
255 |
+
if attention_similarity is not None:
|
256 |
+
attn = attn + attention_similarity
|
257 |
+
attn = torch.softmax(attn, dim=-1)
|
258 |
+
|
259 |
+
# Get output
|
260 |
+
out = attn @ value
|
261 |
+
out = self._recombine_heads(out, point_batch_size)
|
262 |
+
out = self.out_proj(out)
|
263 |
+
|
264 |
+
return out
|
265 |
+
|
266 |
+
|
267 |
+
class SamTwoWayAttentionBlock(nn.Module):
|
268 |
+
def __init__(self, config, attention_downsample_rate: int = 2, skip_first_layer_pe: bool = False):
|
269 |
+
"""
|
270 |
+
A transformer block with four layers:
|
271 |
+
(1) self-attention of sparse inputs (2) cross attention of sparse inputs -> dense inputs (3) mlp block on
|
272 |
+
sparse inputs (4) cross attention of dense inputs -> sparse inputs
|
273 |
+
|
274 |
+
Arguments:
|
275 |
+
config (`SamMaskDecoderConfig`):
|
276 |
+
The configuration file used to instantiate the block
|
277 |
+
attention_downsample_rate (*optionalk*, int, defaults to 2):
|
278 |
+
The downsample ratio of the block used to reduce the inner dim of the attention.
|
279 |
+
skip_first_layer_pe (*optional*, bool, defaults to `False`):
|
280 |
+
Whether or not to skip the addition of the query_point_embedding on the first layer.
|
281 |
+
"""
|
282 |
+
super().__init__()
|
283 |
+
|
284 |
+
self.hidden_size = config.hidden_size
|
285 |
+
self.layer_norm_eps = config.layer_norm_eps
|
286 |
+
|
287 |
+
self.self_attn = SamAttention(config, downsample_rate=1)
|
288 |
+
self.layer_norm1 = nn.LayerNorm(self.hidden_size, eps=self.layer_norm_eps)
|
289 |
+
|
290 |
+
self.cross_attn_token_to_image = SamAttention(config, downsample_rate=attention_downsample_rate)
|
291 |
+
self.layer_norm2 = nn.LayerNorm(self.hidden_size, eps=self.layer_norm_eps)
|
292 |
+
|
293 |
+
self.mlp = SamMLPBlock(config)
|
294 |
+
self.layer_norm3 = nn.LayerNorm(self.hidden_size, eps=self.layer_norm_eps)
|
295 |
+
|
296 |
+
self.layer_norm4 = nn.LayerNorm(self.hidden_size, eps=self.layer_norm_eps)
|
297 |
+
self.cross_attn_image_to_token = SamAttention(config, downsample_rate=attention_downsample_rate)
|
298 |
+
|
299 |
+
self.skip_first_layer_pe = skip_first_layer_pe
|
300 |
+
|
301 |
+
def forward(
|
302 |
+
self,
|
303 |
+
queries: Tensor,
|
304 |
+
keys: Tensor,
|
305 |
+
query_point_embedding: Tensor,
|
306 |
+
key_point_embedding: Tensor,
|
307 |
+
attention_similarity: Tensor,
|
308 |
+
output_attentions: bool = False,
|
309 |
+
):
|
310 |
+
# Self attention block
|
311 |
+
if self.skip_first_layer_pe:
|
312 |
+
queries = self.self_attn(query=queries, key=queries, value=queries)
|
313 |
+
else:
|
314 |
+
query = queries + query_point_embedding
|
315 |
+
attn_out = self.self_attn(query=query, key=query, value=queries)
|
316 |
+
queries = queries + attn_out
|
317 |
+
queries = self.layer_norm1(queries)
|
318 |
+
|
319 |
+
# Cross attention block, tokens attending to image embedding
|
320 |
+
query = queries + query_point_embedding
|
321 |
+
key = keys + key_point_embedding
|
322 |
+
|
323 |
+
attn_out = self.cross_attn_token_to_image(
|
324 |
+
query=query, key=key, value=keys, attention_similarity=attention_similarity
|
325 |
+
)
|
326 |
+
queries = queries + attn_out
|
327 |
+
|
328 |
+
queries = self.layer_norm2(queries)
|
329 |
+
|
330 |
+
# MLP block
|
331 |
+
mlp_out = self.mlp(queries)
|
332 |
+
queries = queries + mlp_out
|
333 |
+
queries = self.layer_norm3(queries)
|
334 |
+
|
335 |
+
# Cross attention block, image embedding attending to tokens
|
336 |
+
query = queries + query_point_embedding
|
337 |
+
key = keys + key_point_embedding
|
338 |
+
|
339 |
+
attn_out = self.cross_attn_image_to_token(query=key, key=query, value=queries)
|
340 |
+
keys = keys + attn_out
|
341 |
+
|
342 |
+
keys = self.layer_norm4(keys)
|
343 |
+
|
344 |
+
outputs = (queries, keys)
|
345 |
+
|
346 |
+
if output_attentions:
|
347 |
+
outputs = outputs + (attn_out,)
|
348 |
+
else:
|
349 |
+
outputs = outputs + (None,)
|
350 |
+
|
351 |
+
return outputs
|
352 |
+
|
353 |
+
|
354 |
+
class SamTwoWayTransformer(nn.Module):
|
355 |
+
def __init__(self, config: SamMaskDecoderConfig):
|
356 |
+
super().__init__()
|
357 |
+
self.config = config
|
358 |
+
|
359 |
+
self.num_hidden_layers = config.num_hidden_layers
|
360 |
+
self.layers = nn.ModuleList()
|
361 |
+
|
362 |
+
for i in range(self.num_hidden_layers):
|
363 |
+
self.layers.append(SamTwoWayAttentionBlock(config, skip_first_layer_pe=(i == 0)))
|
364 |
+
|
365 |
+
self.final_attn_token_to_image = SamAttention(config)
|
366 |
+
self.layer_norm_final_attn = nn.LayerNorm(config.hidden_size)
|
367 |
+
|
368 |
+
def forward(
|
369 |
+
self,
|
370 |
+
point_embeddings: Tensor,
|
371 |
+
image_embeddings: Tensor,
|
372 |
+
image_positional_embeddings: Tensor,
|
373 |
+
attention_similarity: Tensor,
|
374 |
+
target_embedding=None,
|
375 |
+
output_attentions: Optional[bool] = None,
|
376 |
+
output_hidden_states: Optional[bool] = None,
|
377 |
+
return_dict: Optional[bool] = None,
|
378 |
+
) -> Union[Tuple, BaseModelOutput]:
|
379 |
+
output_attentions = (
|
380 |
+
output_attentions if output_attentions is not None else self.config.output_attentions
|
381 |
+
)
|
382 |
+
output_hidden_states = (
|
383 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
384 |
+
)
|
385 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
386 |
+
|
387 |
+
all_attentions = ()
|
388 |
+
|
389 |
+
if image_embeddings is None:
|
390 |
+
raise ValueError("You have to specify an image_embedding")
|
391 |
+
|
392 |
+
image_embeddings = image_embeddings.flatten(2).permute(0, 2, 1).unsqueeze(1)
|
393 |
+
image_positional_embeddings = image_positional_embeddings.flatten(2).permute(0, 2, 1).unsqueeze(1)
|
394 |
+
|
395 |
+
# Prepare queries
|
396 |
+
queries = point_embeddings
|
397 |
+
keys = image_embeddings
|
398 |
+
|
399 |
+
# Apply transformer blocks and final layernorm
|
400 |
+
for layer in self.layers:
|
401 |
+
if target_embedding is not None:
|
402 |
+
queries += target_embedding
|
403 |
+
|
404 |
+
queries, keys, attention_outputs = layer(
|
405 |
+
queries=queries,
|
406 |
+
keys=keys,
|
407 |
+
query_point_embedding=point_embeddings,
|
408 |
+
key_point_embedding=image_positional_embeddings,
|
409 |
+
attention_similarity=attention_similarity,
|
410 |
+
output_attentions=output_attentions,
|
411 |
+
)
|
412 |
+
|
413 |
+
if output_attentions:
|
414 |
+
all_attentions = all_attentions + (attention_outputs,)
|
415 |
+
|
416 |
+
# Apply the final attenion layer from the points to the image
|
417 |
+
query = queries + point_embeddings
|
418 |
+
key = keys + image_positional_embeddings
|
419 |
+
|
420 |
+
attn_out = self.final_attn_token_to_image(query=query, key=key, value=keys)
|
421 |
+
|
422 |
+
queries = queries + attn_out
|
423 |
+
queries = self.layer_norm_final_attn(queries)
|
424 |
+
return queries, keys, all_attentions
|
425 |
+
|
426 |
+
|
427 |
+
class SamFeedForward(nn.Module):
|
428 |
+
def __init__(
|
429 |
+
self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int, sigmoid_output: bool = False
|
430 |
+
):
|
431 |
+
super().__init__()
|
432 |
+
self.num_layers = num_layers
|
433 |
+
self.activation = nn.ReLU()
|
434 |
+
self.proj_in = nn.Linear(input_dim, hidden_dim)
|
435 |
+
self.proj_out = nn.Linear(hidden_dim, output_dim)
|
436 |
+
self.layers = nn.ModuleList([nn.Linear(hidden_dim, hidden_dim) for _ in range(num_layers - 2)])
|
437 |
+
self.sigmoid_output = sigmoid_output
|
438 |
+
|
439 |
+
def forward(self, hidden_states):
|
440 |
+
hidden_states = self.proj_in(hidden_states)
|
441 |
+
hidden_states = self.activation(hidden_states)
|
442 |
+
for layer in self.layers:
|
443 |
+
hidden_states = self.activation(layer(hidden_states))
|
444 |
+
|
445 |
+
hidden_states = self.proj_out(hidden_states)
|
446 |
+
if self.sigmoid_output:
|
447 |
+
hidden_states = F.sigmoid(hidden_states)
|
448 |
+
return hidden_states
|
449 |
+
|
450 |
+
|
451 |
+
class SamMaskDecoderHQ(nn.Module):
|
452 |
+
def __init__(self, config: SamMaskDecoderConfig):
|
453 |
+
super().__init__()
|
454 |
+
|
455 |
+
self.hidden_size = config.hidden_size
|
456 |
+
self.vision_encoder_dim = config.vision_encoder_dim
|
457 |
+
|
458 |
+
self.num_multimask_outputs = config.num_multimask_outputs
|
459 |
+
self.num_mask_tokens = config.num_multimask_outputs + 1
|
460 |
+
|
461 |
+
self.iou_token = nn.Embedding(1, self.hidden_size)
|
462 |
+
self.mask_tokens = nn.Embedding(self.num_mask_tokens, self.hidden_size)
|
463 |
+
|
464 |
+
self.transformer = SamTwoWayTransformer(config)
|
465 |
+
|
466 |
+
# should we create a new class for this?
|
467 |
+
self.upscale_conv1 = nn.ConvTranspose2d(
|
468 |
+
self.hidden_size, self.hidden_size // 4, kernel_size=2, stride=2
|
469 |
+
)
|
470 |
+
self.upscale_conv2 = nn.ConvTranspose2d(
|
471 |
+
self.hidden_size // 4, self.hidden_size // 8, kernel_size=2, stride=2
|
472 |
+
)
|
473 |
+
self.upscale_layer_norm = SamLayerNorm(self.hidden_size // 4, data_format="channels_first")
|
474 |
+
self.activation = nn.GELU()
|
475 |
+
|
476 |
+
mlps_list = []
|
477 |
+
for _ in range(self.num_mask_tokens):
|
478 |
+
mlps_list += [SamFeedForward(self.hidden_size, self.hidden_size, self.hidden_size // 8, 3)]
|
479 |
+
self.output_hypernetworks_mlps = nn.ModuleList(mlps_list)
|
480 |
+
|
481 |
+
self.iou_prediction_head = SamFeedForward(
|
482 |
+
self.hidden_size, config.iou_head_hidden_dim, self.num_mask_tokens, config.iou_head_depth
|
483 |
+
)
|
484 |
+
|
485 |
+
# HQ-SAM parameters
|
486 |
+
self.hf_token = nn.Embedding(1, self.hidden_size) # HQ-Ouptput-Token
|
487 |
+
self.hf_mlp = SamFeedForward(
|
488 |
+
self.hidden_size, self.hidden_size, self.hidden_size // 8, 3
|
489 |
+
) # corresponding new MLP layer for HQ-Ouptput-Token
|
490 |
+
self.num_mask_tokens = self.num_mask_tokens + 1
|
491 |
+
|
492 |
+
# three conv fusion layers for obtaining HQ-Feature
|
493 |
+
self.compress_vit_feat = nn.Sequential(
|
494 |
+
nn.ConvTranspose2d(self.vision_encoder_dim, self.hidden_size, kernel_size=2, stride=2),
|
495 |
+
SamLayerNorm(self.hidden_size, data_format="channels_first"),
|
496 |
+
nn.GELU(),
|
497 |
+
nn.ConvTranspose2d(self.hidden_size, self.hidden_size // 8, kernel_size=2, stride=2),
|
498 |
+
)
|
499 |
+
|
500 |
+
self.embedding_encoder = nn.Sequential(
|
501 |
+
nn.ConvTranspose2d(self.hidden_size, self.hidden_size // 4, kernel_size=2, stride=2),
|
502 |
+
SamLayerNorm(self.hidden_size // 4, data_format="channels_first"),
|
503 |
+
nn.GELU(),
|
504 |
+
nn.ConvTranspose2d(self.hidden_size // 4, self.hidden_size // 8, kernel_size=2, stride=2),
|
505 |
+
)
|
506 |
+
self.embedding_maskfeature = nn.Sequential(
|
507 |
+
nn.Conv2d(self.hidden_size // 8, self.hidden_size // 4, 3, 1, 1),
|
508 |
+
SamLayerNorm(self.hidden_size // 4, data_format="channels_first"),
|
509 |
+
nn.GELU(),
|
510 |
+
nn.Conv2d(self.hidden_size // 4, self.hidden_size // 8, 3, 1, 1),
|
511 |
+
)
|
512 |
+
|
513 |
+
def forward(
|
514 |
+
self,
|
515 |
+
image_embeddings: torch.Tensor,
|
516 |
+
image_positional_embeddings: torch.Tensor,
|
517 |
+
sparse_prompt_embeddings: torch.Tensor,
|
518 |
+
dense_prompt_embeddings: torch.Tensor,
|
519 |
+
multimask_output: bool,
|
520 |
+
intermediate_vision_embeddings: torch.Tensor,
|
521 |
+
hq_token_only: bool = False,
|
522 |
+
output_attentions: Optional[bool] = None,
|
523 |
+
attention_similarity: torch.Tensor = None,
|
524 |
+
target_embedding: torch.Tensor = None,
|
525 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
526 |
+
"""
|
527 |
+
Predict masks given image and prompt embeddings.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
image_embeddings (`torch.Tensor`):
|
531 |
+
the embeddings from the image encoder
|
532 |
+
image_positional_embedding (`torch.Tensor`):
|
533 |
+
positional encoding with the shape of image_embeddings
|
534 |
+
sparse_prompt_embeddings (`torch.Tensor`):
|
535 |
+
The embeddings of the points and boxes
|
536 |
+
dense_prompt_embeddings (`torch.Tensor`):
|
537 |
+
the embeddings of the mask inputs
|
538 |
+
multimask_output (bool):
|
539 |
+
Whether to return multiple masks or a single mask.
|
540 |
+
output_attentions (bool, *optional*):
|
541 |
+
Whether or not to return the attentions tensors of all attention layers.
|
542 |
+
"""
|
543 |
+
batch_size, num_channels, height, width = image_embeddings.shape
|
544 |
+
point_batch_size = sparse_prompt_embeddings.shape[1]
|
545 |
+
|
546 |
+
vit_inter_features = intermediate_vision_embeddings[0].permute(
|
547 |
+
0, 3, 1, 2
|
548 |
+
) # early-layer ViT feature, after 1st global attention block in ViT
|
549 |
+
hq_features = self.embedding_encoder(image_embeddings) + self.compress_vit_feat(vit_inter_features)
|
550 |
+
|
551 |
+
# Concatenate output tokens
|
552 |
+
output_tokens = torch.cat(
|
553 |
+
[self.iou_token.weight, self.mask_tokens.weight, self.hf_token.weight], dim=0
|
554 |
+
)
|
555 |
+
output_tokens = output_tokens.repeat(batch_size, point_batch_size, 1, 1)
|
556 |
+
|
557 |
+
if sparse_prompt_embeddings.sum().item() != 0:
|
558 |
+
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=2)
|
559 |
+
else:
|
560 |
+
tokens = output_tokens
|
561 |
+
point_embeddings = tokens.to(self.iou_token.weight.dtype)
|
562 |
+
|
563 |
+
# Expand per-image data in batch direction to be per-point
|
564 |
+
image_embeddings = image_embeddings + dense_prompt_embeddings
|
565 |
+
image_embeddings = image_embeddings.repeat_interleave(point_batch_size, 0)
|
566 |
+
image_positional_embeddings = image_positional_embeddings.repeat_interleave(point_batch_size, 0)
|
567 |
+
|
568 |
+
# Run the transformer, image_positional_embedding are consumed
|
569 |
+
point_embedding, image_embeddings, attentions = self.transformer(
|
570 |
+
point_embeddings=point_embeddings,
|
571 |
+
image_embeddings=image_embeddings,
|
572 |
+
image_positional_embeddings=image_positional_embeddings,
|
573 |
+
attention_similarity=attention_similarity,
|
574 |
+
target_embedding=target_embedding,
|
575 |
+
output_attentions=output_attentions,
|
576 |
+
)
|
577 |
+
iou_token_out = point_embedding[:, :, 0, :]
|
578 |
+
mask_tokens_out = point_embedding[:, :, 1 : (1 + self.num_mask_tokens), :]
|
579 |
+
|
580 |
+
# Upscale mask embeddings and predict masks using the mask tokens
|
581 |
+
image_embeddings = image_embeddings.transpose(2, 3).reshape(
|
582 |
+
batch_size * point_batch_size, num_channels, height, width
|
583 |
+
)
|
584 |
+
|
585 |
+
upscaled_embedding_sam = self.upscale_conv1(image_embeddings)
|
586 |
+
upscaled_embedding_sam = self.activation(self.upscale_layer_norm(upscaled_embedding_sam))
|
587 |
+
upscaled_embedding_sam = self.activation(self.upscale_conv2(upscaled_embedding_sam))
|
588 |
+
|
589 |
+
upscaled_embedding_hq = self.embedding_maskfeature(upscaled_embedding_sam) + hq_features.repeat(
|
590 |
+
batch_size * point_batch_size, 1, 1, 1
|
591 |
+
)
|
592 |
+
|
593 |
+
hyper_in_list = []
|
594 |
+
for i in range(self.num_mask_tokens):
|
595 |
+
mask_out_embedding = mask_tokens_out[:, :, i, :]
|
596 |
+
if i < self.num_mask_tokens - 1:
|
597 |
+
hyper = self.output_hypernetworks_mlps[i](mask_out_embedding)
|
598 |
+
else:
|
599 |
+
hyper = self.hf_mlp(mask_out_embedding)
|
600 |
+
hyper_in_list.append(hyper)
|
601 |
+
hyper_in = torch.stack(hyper_in_list, dim=2)
|
602 |
+
|
603 |
+
_, num_channels, height, width = upscaled_embedding_sam.shape
|
604 |
+
upscaled_embedding_sam = upscaled_embedding_sam.reshape(
|
605 |
+
batch_size, point_batch_size, num_channels, height * width
|
606 |
+
)
|
607 |
+
upscaled_embedding_hq = upscaled_embedding_hq.reshape(
|
608 |
+
batch_size, point_batch_size, num_channels, height * width
|
609 |
+
)
|
610 |
+
|
611 |
+
masks_sam = (hyper_in[:, :, : self.num_mask_tokens - 1] @ upscaled_embedding_sam).reshape(
|
612 |
+
batch_size, point_batch_size, -1, height, width
|
613 |
+
)
|
614 |
+
masks_hq = (hyper_in[:, :, self.num_mask_tokens - 1 :] @ upscaled_embedding_hq).reshape(
|
615 |
+
batch_size, point_batch_size, 1, height, width
|
616 |
+
)
|
617 |
+
masks = torch.cat([masks_sam, masks_hq], dim=2)
|
618 |
+
|
619 |
+
# Generate mask quality predictions
|
620 |
+
iou_pred = self.iou_prediction_head(iou_token_out)
|
621 |
+
|
622 |
+
# Select the correct mask or masks for output
|
623 |
+
if multimask_output:
|
624 |
+
# mask with highest score
|
625 |
+
mask_slice = slice(1, self.num_mask_tokens - 1)
|
626 |
+
iou_pred = iou_pred[:, :, mask_slice]
|
627 |
+
iou_pred, max_iou_idx = torch.max(iou_pred, dim=2)
|
628 |
+
masks_multi = masks[:, :, mask_slice, :, :]
|
629 |
+
masks_sam = masks_multi[
|
630 |
+
torch.arange(batch_size)[:, None, None],
|
631 |
+
torch.arange(point_batch_size)[None, :, None],
|
632 |
+
max_iou_idx,
|
633 |
+
:,
|
634 |
+
:,
|
635 |
+
]
|
636 |
+
else:
|
637 |
+
# single mask output, default
|
638 |
+
mask_slice = slice(0, 1)
|
639 |
+
iou_pred = iou_pred[:, :, mask_slice]
|
640 |
+
masks_sam = masks[:, :, mask_slice, :, :]
|
641 |
+
# masks = masks[:, :, mask_slice, :, :]
|
642 |
+
# iou_pred = iou_pred[:, :, mask_slice]
|
643 |
+
if hq_token_only:
|
644 |
+
masks = masks_hq
|
645 |
+
else:
|
646 |
+
masks = masks_sam + masks_hq
|
647 |
+
|
648 |
+
outputs = (masks, iou_pred)
|
649 |
+
|
650 |
+
if output_attentions:
|
651 |
+
outputs = outputs + (attentions,)
|
652 |
+
else:
|
653 |
+
outputs = outputs + (None,)
|
654 |
+
|
655 |
+
return outputs
|
656 |
+
|
657 |
+
|
658 |
+
class SamPositionalEmbedding(nn.Module):
|
659 |
+
def __init__(self, config):
|
660 |
+
super().__init__()
|
661 |
+
self.scale = config.hidden_size // 2
|
662 |
+
self.register_buffer("positional_embedding", self.scale * torch.randn((2, config.num_pos_feats)))
|
663 |
+
|
664 |
+
def forward(self, input_coords, input_shape=None):
|
665 |
+
"""Positionally encode points that are normalized to [0,1]."""
|
666 |
+
coordinates = input_coords.clone()
|
667 |
+
|
668 |
+
if input_shape is not None:
|
669 |
+
coordinates[:, :, :, 0] = coordinates[:, :, :, 0] / input_shape[1]
|
670 |
+
coordinates[:, :, :, 1] = coordinates[:, :, :, 1] / input_shape[0]
|
671 |
+
|
672 |
+
# assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
|
673 |
+
coordinates = 2 * coordinates - 1
|
674 |
+
coordinates = coordinates.to(self.positional_embedding.dtype)
|
675 |
+
coordinates = coordinates @ self.positional_embedding
|
676 |
+
coordinates = 2 * np.pi * coordinates
|
677 |
+
# outputs d_1 x ... x d_n x channel shape
|
678 |
+
return torch.cat([torch.sin(coordinates), torch.cos(coordinates)], dim=-1)
|
679 |
+
|
680 |
+
|
681 |
+
class SamMaskEmbedding(nn.Module):
|
682 |
+
def __init__(self, config: SamPromptEncoderConfig):
|
683 |
+
super().__init__()
|
684 |
+
self.mask_input_channels = config.mask_input_channels // 4
|
685 |
+
self.activation = ACT2FN[config.hidden_act]
|
686 |
+
self.conv1 = nn.Conv2d(1, self.mask_input_channels, kernel_size=2, stride=2)
|
687 |
+
self.conv2 = nn.Conv2d(self.mask_input_channels, config.mask_input_channels, kernel_size=2, stride=2)
|
688 |
+
self.conv3 = nn.Conv2d(config.mask_input_channels, config.hidden_size, kernel_size=1)
|
689 |
+
self.layer_norm1 = SamLayerNorm(
|
690 |
+
self.mask_input_channels, eps=config.layer_norm_eps, data_format="channels_first"
|
691 |
+
)
|
692 |
+
self.layer_norm2 = SamLayerNorm(
|
693 |
+
self.mask_input_channels * 4, eps=config.layer_norm_eps, data_format="channels_first"
|
694 |
+
)
|
695 |
+
|
696 |
+
def forward(self, masks):
|
697 |
+
hidden_states = self.conv1(masks)
|
698 |
+
hidden_states = self.layer_norm1(hidden_states)
|
699 |
+
hidden_states = self.activation(hidden_states)
|
700 |
+
|
701 |
+
hidden_states = self.conv2(hidden_states)
|
702 |
+
hidden_states = self.layer_norm2(hidden_states)
|
703 |
+
hidden_states = self.activation(hidden_states)
|
704 |
+
dense_embeddings = self.conv3(hidden_states)
|
705 |
+
return dense_embeddings
|
706 |
+
|
707 |
+
|
708 |
+
class SamPromptEncoder(nn.Module):
|
709 |
+
def __init__(self, config: SamPromptEncoderConfig, shared_patch_embedding):
|
710 |
+
super().__init__()
|
711 |
+
self.shared_embedding = shared_patch_embedding
|
712 |
+
self.mask_embed = SamMaskEmbedding(config)
|
713 |
+
self.no_mask_embed = nn.Embedding(1, config.hidden_size)
|
714 |
+
|
715 |
+
self.image_embedding_size = (config.image_embedding_size, config.image_embedding_size)
|
716 |
+
self.input_image_size = config.image_size
|
717 |
+
|
718 |
+
self.point_embed = nn.ModuleList(
|
719 |
+
[nn.Embedding(1, config.hidden_size) for i in range(config.num_point_embeddings)]
|
720 |
+
)
|
721 |
+
self.hidden_size = config.hidden_size
|
722 |
+
self.not_a_point_embed = nn.Embedding(1, config.hidden_size)
|
723 |
+
|
724 |
+
def _embed_points(self, points: torch.Tensor, labels: torch.Tensor, pad: bool) -> torch.Tensor:
|
725 |
+
"""Embeds point prompts."""
|
726 |
+
points = points + 0.5 # Shift to center of pixel
|
727 |
+
if pad:
|
728 |
+
target_point_shape = (points.shape[0], points.shape[1], 1, points.shape[-1])
|
729 |
+
target_labels_shape = (points.shape[0], points.shape[1], 1)
|
730 |
+
padding_point = torch.zeros(target_point_shape, device=points.device)
|
731 |
+
padding_label = -torch.ones(target_labels_shape, device=labels.device)
|
732 |
+
points = torch.cat([points, padding_point], dim=2)
|
733 |
+
labels = torch.cat([labels, padding_label], dim=2)
|
734 |
+
input_shape = (self.input_image_size, self.input_image_size)
|
735 |
+
point_embedding = self.shared_embedding(points, input_shape)
|
736 |
+
|
737 |
+
# torch.where and expanding the labels tensor is required by the ONNX export
|
738 |
+
point_embedding = torch.where(labels[..., None] == -1, self.not_a_point_embed.weight, point_embedding)
|
739 |
+
|
740 |
+
# This is required for the ONNX export. The dtype, device need to be explicitely
|
741 |
+
# specificed as otherwise torch.onnx.export interprets as double
|
742 |
+
point_embedding = torch.where(
|
743 |
+
labels[..., None] != -10,
|
744 |
+
point_embedding,
|
745 |
+
torch.tensor(0.0, dtype=point_embedding.dtype, device=point_embedding.device),
|
746 |
+
)
|
747 |
+
|
748 |
+
point_embedding = torch.where(
|
749 |
+
(labels == 0)[:, :, :, None],
|
750 |
+
point_embedding + self.point_embed[0].weight[None, None, :, :],
|
751 |
+
point_embedding,
|
752 |
+
)
|
753 |
+
|
754 |
+
point_embedding = torch.where(
|
755 |
+
(labels == 1)[:, :, :, None],
|
756 |
+
point_embedding + self.point_embed[1].weight[None, None, :, :],
|
757 |
+
point_embedding,
|
758 |
+
)
|
759 |
+
|
760 |
+
return point_embedding
|
761 |
+
|
762 |
+
def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
|
763 |
+
"""Embeds box prompts."""
|
764 |
+
boxes = boxes + 0.5 # Shift to center of pixel
|
765 |
+
batch_size, nb_boxes = boxes.shape[:2]
|
766 |
+
coords = boxes.reshape(batch_size, nb_boxes, 2, 2)
|
767 |
+
input_shape = (self.input_image_size, self.input_image_size)
|
768 |
+
corner_embedding = self.shared_embedding(coords, input_shape)
|
769 |
+
corner_embedding[:, :, 0, :] += self.point_embed[2].weight
|
770 |
+
corner_embedding[:, :, 1, :] += self.point_embed[3].weight
|
771 |
+
return corner_embedding
|
772 |
+
|
773 |
+
def forward(
|
774 |
+
self,
|
775 |
+
input_points: Optional[Tuple[torch.Tensor, torch.Tensor]],
|
776 |
+
input_labels: Optional[torch.Tensor],
|
777 |
+
input_boxes: Optional[torch.Tensor],
|
778 |
+
input_masks: Optional[torch.Tensor],
|
779 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
780 |
+
"""
|
781 |
+
Embeds different types of prompts, returning both sparse and dense embeddings.
|
782 |
+
|
783 |
+
Args:
|
784 |
+
points (`torch.Tensor`, *optional*):
|
785 |
+
point coordinates and labels to embed.
|
786 |
+
boxes (`torch.Tensor`, *optional*):
|
787 |
+
boxes to embed
|
788 |
+
masks (`torch.Tensor`, *optional*):
|
789 |
+
masks to embed
|
790 |
+
"""
|
791 |
+
sparse_embeddings = None
|
792 |
+
batch_size = 1
|
793 |
+
target_device = self.shared_embedding.positional_embedding.device
|
794 |
+
if input_points is not None:
|
795 |
+
batch_size, point_batch_size = input_points.shape[:2]
|
796 |
+
if input_labels is None:
|
797 |
+
raise ValueError("If points are provided, labels must also be provided.")
|
798 |
+
point_embeddings = self._embed_points(input_points, input_labels, pad=(input_boxes is None))
|
799 |
+
sparse_embeddings = point_embeddings
|
800 |
+
if input_boxes is not None:
|
801 |
+
batch_size = input_boxes.shape[0]
|
802 |
+
box_embeddings = self._embed_boxes(input_boxes)
|
803 |
+
if sparse_embeddings is None:
|
804 |
+
sparse_embeddings = box_embeddings
|
805 |
+
else:
|
806 |
+
sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=2)
|
807 |
+
if input_masks is not None:
|
808 |
+
dense_embeddings = self.mask_embed(input_masks)
|
809 |
+
else:
|
810 |
+
dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
|
811 |
+
batch_size, -1, self.image_embedding_size[0], self.image_embedding_size[1]
|
812 |
+
)
|
813 |
+
|
814 |
+
if sparse_embeddings is None:
|
815 |
+
sparse_embeddings = torch.zeros((batch_size, 1, 1, self.hidden_size), device=target_device)
|
816 |
+
|
817 |
+
return sparse_embeddings, dense_embeddings
|
818 |
+
|
819 |
+
|
820 |
+
class SamVisionAttention(nn.Module):
|
821 |
+
"""Multi-head Attention block with relative position embeddings."""
|
822 |
+
|
823 |
+
def __init__(self, config, window_size):
|
824 |
+
super().__init__()
|
825 |
+
input_size = (
|
826 |
+
(config.image_size // config.patch_size, config.image_size // config.patch_size)
|
827 |
+
if window_size == 0
|
828 |
+
else (window_size, window_size)
|
829 |
+
)
|
830 |
+
|
831 |
+
self.num_attention_heads = config.num_attention_heads
|
832 |
+
head_dim = config.hidden_size // config.num_attention_heads
|
833 |
+
self.scale = head_dim**-0.5
|
834 |
+
self.dropout = config.attention_dropout
|
835 |
+
|
836 |
+
self.qkv = nn.Linear(config.hidden_size, config.hidden_size * 3, bias=config.qkv_bias)
|
837 |
+
self.proj = nn.Linear(config.hidden_size, config.hidden_size)
|
838 |
+
|
839 |
+
self.use_rel_pos = config.use_rel_pos
|
840 |
+
if self.use_rel_pos:
|
841 |
+
if input_size is None:
|
842 |
+
raise ValueError("Input size must be provided if using relative positional encoding.")
|
843 |
+
|
844 |
+
# initialize relative positional embeddings
|
845 |
+
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
|
846 |
+
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
|
847 |
+
|
848 |
+
def get_rel_pos(self, q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
|
849 |
+
"""
|
850 |
+
Get relative positional embeddings according to the relative positions of
|
851 |
+
query and key sizes.
|
852 |
+
|
853 |
+
Args:
|
854 |
+
q_size (int):
|
855 |
+
size of the query.
|
856 |
+
k_size (int):
|
857 |
+
size of key k.
|
858 |
+
rel_pos (`torch.Tensor`):
|
859 |
+
relative position embeddings (L, channel).
|
860 |
+
|
861 |
+
Returns:
|
862 |
+
Extracted positional embeddings according to relative positions.
|
863 |
+
"""
|
864 |
+
max_rel_dist = int(2 * max(q_size, k_size) - 1)
|
865 |
+
# Interpolate rel pos.
|
866 |
+
rel_pos_resized = F.interpolate(
|
867 |
+
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
|
868 |
+
size=max_rel_dist,
|
869 |
+
mode="linear",
|
870 |
+
)
|
871 |
+
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
|
872 |
+
|
873 |
+
# Scale the coords with short length if shapes for q and k are different.
|
874 |
+
q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
|
875 |
+
k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
|
876 |
+
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
|
877 |
+
|
878 |
+
return rel_pos_resized[relative_coords.long()]
|
879 |
+
|
880 |
+
def add_decomposed_rel_pos(
|
881 |
+
self,
|
882 |
+
attn: torch.Tensor,
|
883 |
+
query: torch.Tensor,
|
884 |
+
rel_pos_h: torch.Tensor,
|
885 |
+
rel_pos_w: torch.Tensor,
|
886 |
+
q_size: Tuple[int, int],
|
887 |
+
k_size: Tuple[int, int],
|
888 |
+
) -> torch.Tensor:
|
889 |
+
"""
|
890 |
+
Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
|
891 |
+
https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py
|
892 |
+
|
893 |
+
Args:
|
894 |
+
attn (`torch.Tensor`):
|
895 |
+
attention map.
|
896 |
+
query (`torch.Tensor`):
|
897 |
+
query q in the attention layer with shape (batch_size, query_height * query_width, channel).
|
898 |
+
rel_pos_h (`torch.Tensor`):
|
899 |
+
relative position embeddings (Lh, channel) for height axis.
|
900 |
+
rel_pos_w (`torch.Tensor`):
|
901 |
+
relative position embeddings (Lw, channel) for width axis.
|
902 |
+
q_size (tuple):
|
903 |
+
spatial sequence size of query q with (query_height, query_width).
|
904 |
+
k_size (tuple):
|
905 |
+
spatial sequence size of key k with (key_height, key_width).
|
906 |
+
|
907 |
+
Returns:
|
908 |
+
attn (`torch.Tensor`):
|
909 |
+
attention map with added relative positional embeddings.
|
910 |
+
"""
|
911 |
+
query_height, query_width = q_size
|
912 |
+
key_height, key_width = k_size
|
913 |
+
relative_position_height = self.get_rel_pos(query_height, key_height, rel_pos_h)
|
914 |
+
relative_position_width = self.get_rel_pos(query_width, key_width, rel_pos_w)
|
915 |
+
|
916 |
+
batch_size, _, dim = query.shape
|
917 |
+
reshaped_query = query.reshape(batch_size, query_height, query_width, dim)
|
918 |
+
rel_h = torch.einsum("bhwc,hkc->bhwk", reshaped_query, relative_position_height)
|
919 |
+
rel_w = torch.einsum("bhwc,wkc->bhwk", reshaped_query, relative_position_width)
|
920 |
+
attn = attn.reshape(batch_size, query_height, query_width, key_height, key_width)
|
921 |
+
attn = attn + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]
|
922 |
+
attn = attn.reshape(batch_size, query_height * query_width, key_height * key_width)
|
923 |
+
return attn
|
924 |
+
|
925 |
+
def forward(self, hidden_states: torch.Tensor, output_attentions=False) -> torch.Tensor:
|
926 |
+
batch_size, height, width, _ = hidden_states.shape
|
927 |
+
# qkv with shape (3, batch_size, nHead, height * width, channel)
|
928 |
+
qkv = (
|
929 |
+
self.qkv(hidden_states)
|
930 |
+
.reshape(batch_size, height * width, 3, self.num_attention_heads, -1)
|
931 |
+
.permute(2, 0, 3, 1, 4)
|
932 |
+
)
|
933 |
+
# q, k, v with shape (batch_size * nHead, height * width, channel)
|
934 |
+
query, key, value = qkv.reshape(3, batch_size * self.num_attention_heads, height * width, -1).unbind(
|
935 |
+
0
|
936 |
+
)
|
937 |
+
|
938 |
+
attn_weights = (query * self.scale) @ key.transpose(-2, -1)
|
939 |
+
|
940 |
+
if self.use_rel_pos:
|
941 |
+
attn_weights = self.add_decomposed_rel_pos(
|
942 |
+
attn_weights, query, self.rel_pos_h, self.rel_pos_w, (height, width), (height, width)
|
943 |
+
)
|
944 |
+
|
945 |
+
attn_weights = torch.nn.functional.softmax(attn_weights, dtype=torch.float32, dim=-1).to(query.dtype)
|
946 |
+
|
947 |
+
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
948 |
+
|
949 |
+
attn_output = (attn_probs @ value).reshape(batch_size, self.num_attention_heads, height, width, -1)
|
950 |
+
attn_output = attn_output.permute(0, 2, 3, 1, 4).reshape(batch_size, height, width, -1)
|
951 |
+
|
952 |
+
attn_output = self.proj(attn_output)
|
953 |
+
|
954 |
+
if output_attentions:
|
955 |
+
outputs = (attn_output, attn_weights)
|
956 |
+
else:
|
957 |
+
outputs = (attn_output, None)
|
958 |
+
|
959 |
+
return outputs
|
960 |
+
|
961 |
+
|
962 |
+
class SamVisionLayer(nn.Module):
|
963 |
+
def __init__(self, config, window_size):
|
964 |
+
super().__init__()
|
965 |
+
self.layer_norm1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
966 |
+
self.attn = SamVisionAttention(config, window_size)
|
967 |
+
self.layer_norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
968 |
+
self.mlp = SamMLPBlock(config)
|
969 |
+
self.window_size = window_size
|
970 |
+
|
971 |
+
def window_partition(
|
972 |
+
self, hidden_states: torch.Tensor, window_size: int
|
973 |
+
) -> Tuple[torch.Tensor, Tuple[int, int]]:
|
974 |
+
"""
|
975 |
+
Args:
|
976 |
+
Partition into non-overlapping windows with padding if needed.
|
977 |
+
hidden_states (tensor): input tokens with [batch_size, height, width, channel]. window_size (int): window
|
978 |
+
size.
|
979 |
+
|
980 |
+
Returns:
|
981 |
+
windows: windows after partition with [batch_size * num_windows, window_size, window_size, channel].
|
982 |
+
(pad_height, pad_width): padded height and width before partition
|
983 |
+
"""
|
984 |
+
batch_size, height, width, channel = hidden_states.shape
|
985 |
+
|
986 |
+
pad_h = (window_size - height % window_size) % window_size
|
987 |
+
pad_w = (window_size - width % window_size) % window_size
|
988 |
+
hidden_states = F.pad(hidden_states, (0, 0, 0, pad_w, 0, pad_h))
|
989 |
+
pad_height, pad_width = height + pad_h, width + pad_w
|
990 |
+
|
991 |
+
hidden_states = hidden_states.reshape(
|
992 |
+
batch_size, pad_height // window_size, window_size, pad_width // window_size, window_size, channel
|
993 |
+
)
|
994 |
+
windows = (
|
995 |
+
hidden_states.permute(0, 1, 3, 2, 4, 5)
|
996 |
+
.contiguous()
|
997 |
+
.reshape(-1, window_size, window_size, channel)
|
998 |
+
)
|
999 |
+
return windows, (pad_height, pad_width)
|
1000 |
+
|
1001 |
+
def window_unpartition(
|
1002 |
+
self,
|
1003 |
+
windows: torch.Tensor,
|
1004 |
+
window_size: int,
|
1005 |
+
padding_shape: Tuple[int, int],
|
1006 |
+
original_shape: Tuple[int, int],
|
1007 |
+
) -> torch.Tensor:
|
1008 |
+
"""
|
1009 |
+
Args:
|
1010 |
+
Window unpartition into original sequences and removing padding.
|
1011 |
+
hidden_states (tensor):
|
1012 |
+
input tokens with [batch_size * num_windows, window_size, window_size, channel].
|
1013 |
+
window_size (int):
|
1014 |
+
window size.
|
1015 |
+
padding_shape (Tuple):
|
1016 |
+
padded height and width (pad_height, pad_width).
|
1017 |
+
original_shape (Tuple): original height and width (height, width) before padding.
|
1018 |
+
|
1019 |
+
Returns:
|
1020 |
+
hidden_states: unpartitioned sequences with [batch_size, height, width, channel].
|
1021 |
+
"""
|
1022 |
+
pad_height, pad_width = padding_shape
|
1023 |
+
height, width = original_shape
|
1024 |
+
batch_size = windows.shape[0] // (pad_height * pad_width // window_size // window_size)
|
1025 |
+
hidden_states = windows.reshape(
|
1026 |
+
batch_size, pad_height // window_size, pad_width // window_size, window_size, window_size, -1
|
1027 |
+
)
|
1028 |
+
hidden_states = (
|
1029 |
+
hidden_states.permute(0, 1, 3, 2, 4, 5)
|
1030 |
+
.contiguous()
|
1031 |
+
.reshape(batch_size, pad_height, pad_width, -1)
|
1032 |
+
)
|
1033 |
+
|
1034 |
+
hidden_states = hidden_states[:, :height, :width, :].contiguous()
|
1035 |
+
return hidden_states
|
1036 |
+
|
1037 |
+
def forward(
|
1038 |
+
self,
|
1039 |
+
hidden_states: torch.Tensor,
|
1040 |
+
output_attentions: Optional[bool] = False,
|
1041 |
+
) -> Tuple[torch.FloatTensor]:
|
1042 |
+
residual = hidden_states
|
1043 |
+
|
1044 |
+
hidden_states = self.layer_norm1(hidden_states)
|
1045 |
+
# Window partition
|
1046 |
+
if self.window_size > 0:
|
1047 |
+
height, width = hidden_states.shape[1], hidden_states.shape[2]
|
1048 |
+
hidden_states, padding_shape = self.window_partition(hidden_states, self.window_size)
|
1049 |
+
|
1050 |
+
hidden_states, attn_weights = self.attn(
|
1051 |
+
hidden_states=hidden_states,
|
1052 |
+
output_attentions=output_attentions,
|
1053 |
+
)
|
1054 |
+
# Reverse window partition
|
1055 |
+
if self.window_size > 0:
|
1056 |
+
hidden_states = self.window_unpartition(
|
1057 |
+
hidden_states, self.window_size, padding_shape, (height, width)
|
1058 |
+
)
|
1059 |
+
|
1060 |
+
hidden_states = residual + hidden_states
|
1061 |
+
layernorm_output = self.layer_norm2(hidden_states)
|
1062 |
+
hidden_states = hidden_states + self.mlp(layernorm_output)
|
1063 |
+
|
1064 |
+
outputs = (hidden_states,)
|
1065 |
+
if output_attentions:
|
1066 |
+
outputs += (attn_weights,)
|
1067 |
+
|
1068 |
+
return outputs
|
1069 |
+
|
1070 |
+
|
1071 |
+
class SamVisionNeck(nn.Module):
|
1072 |
+
def __init__(self, config: SamVisionConfig):
|
1073 |
+
super().__init__()
|
1074 |
+
self.config = config
|
1075 |
+
|
1076 |
+
self.conv1 = nn.Conv2d(config.hidden_size, config.output_channels, kernel_size=1, bias=False)
|
1077 |
+
self.layer_norm1 = SamLayerNorm(config.output_channels, data_format="channels_first")
|
1078 |
+
self.conv2 = nn.Conv2d(
|
1079 |
+
config.output_channels, config.output_channels, kernel_size=3, padding=1, bias=False
|
1080 |
+
)
|
1081 |
+
self.layer_norm2 = SamLayerNorm(config.output_channels, data_format="channels_first")
|
1082 |
+
|
1083 |
+
def forward(self, hidden_states):
|
1084 |
+
hidden_states = hidden_states.permute(0, 3, 1, 2)
|
1085 |
+
hidden_states = self.conv1(hidden_states)
|
1086 |
+
hidden_states = self.layer_norm1(hidden_states)
|
1087 |
+
|
1088 |
+
hidden_states = self.conv2(hidden_states)
|
1089 |
+
hidden_states = self.layer_norm2(hidden_states)
|
1090 |
+
return hidden_states
|
1091 |
+
|
1092 |
+
|
1093 |
+
class SamVisionEncoder(nn.Module):
|
1094 |
+
def __init__(self, config: SamVisionConfig):
|
1095 |
+
super().__init__()
|
1096 |
+
self.config = config
|
1097 |
+
self.image_size = config.image_size
|
1098 |
+
|
1099 |
+
self.patch_embed = SamPatchEmbeddings(config)
|
1100 |
+
|
1101 |
+
self.pos_embed = None
|
1102 |
+
if config.use_abs_pos:
|
1103 |
+
# Initialize absolute positional embedding with pretrain image size.
|
1104 |
+
self.pos_embed = nn.Parameter(
|
1105 |
+
torch.zeros(
|
1106 |
+
1,
|
1107 |
+
config.image_size // config.patch_size,
|
1108 |
+
config.image_size // config.patch_size,
|
1109 |
+
config.hidden_size,
|
1110 |
+
)
|
1111 |
+
)
|
1112 |
+
|
1113 |
+
self.layers = nn.ModuleList()
|
1114 |
+
for i in range(config.num_hidden_layers):
|
1115 |
+
layer = SamVisionLayer(
|
1116 |
+
config,
|
1117 |
+
window_size=config.window_size if i not in config.global_attn_indexes else 0,
|
1118 |
+
)
|
1119 |
+
self.layers.append(layer)
|
1120 |
+
|
1121 |
+
self.neck = SamVisionNeck(config)
|
1122 |
+
|
1123 |
+
self.gradient_checkpointing = False
|
1124 |
+
|
1125 |
+
def get_input_embeddings(self):
|
1126 |
+
return self.patch_embed
|
1127 |
+
|
1128 |
+
def forward(
|
1129 |
+
self,
|
1130 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1131 |
+
output_attentions: Optional[bool] = None,
|
1132 |
+
output_hidden_states: Optional[bool] = None,
|
1133 |
+
return_dict: Optional[bool] = None,
|
1134 |
+
) -> Union[Tuple, SamVisionEncoderOutput]:
|
1135 |
+
output_attentions = (
|
1136 |
+
output_attentions if output_attentions is not None else self.config.output_attentions
|
1137 |
+
)
|
1138 |
+
output_hidden_states = (
|
1139 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1140 |
+
)
|
1141 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1142 |
+
|
1143 |
+
if pixel_values is None:
|
1144 |
+
raise ValueError("You have to specify pixel_values")
|
1145 |
+
|
1146 |
+
hidden_states = self.patch_embed(pixel_values)
|
1147 |
+
if self.pos_embed is not None:
|
1148 |
+
hidden_states = hidden_states + self.pos_embed
|
1149 |
+
|
1150 |
+
all_hidden_states = () if output_hidden_states else None
|
1151 |
+
all_self_attentions = () if output_attentions else None
|
1152 |
+
|
1153 |
+
for i, layer_module in enumerate(self.layers):
|
1154 |
+
if output_hidden_states:
|
1155 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
1156 |
+
|
1157 |
+
if self.gradient_checkpointing and self.training:
|
1158 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1159 |
+
layer_module.__call__,
|
1160 |
+
hidden_states,
|
1161 |
+
)
|
1162 |
+
else:
|
1163 |
+
layer_outputs = layer_module(hidden_states, output_attentions=output_attentions)
|
1164 |
+
|
1165 |
+
hidden_states = layer_outputs[0]
|
1166 |
+
|
1167 |
+
if output_attentions:
|
1168 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
1169 |
+
|
1170 |
+
if output_hidden_states:
|
1171 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
1172 |
+
|
1173 |
+
hidden_states = self.neck(hidden_states)
|
1174 |
+
|
1175 |
+
if not return_dict:
|
1176 |
+
outputs = (hidden_states,)
|
1177 |
+
if output_hidden_states:
|
1178 |
+
outputs = outputs + (all_hidden_states,)
|
1179 |
+
if output_attentions:
|
1180 |
+
outputs = outputs + (all_self_attentions,)
|
1181 |
+
return outputs
|
1182 |
+
|
1183 |
+
return SamVisionEncoderOutput(
|
1184 |
+
last_hidden_state=hidden_states,
|
1185 |
+
hidden_states=all_hidden_states,
|
1186 |
+
attentions=all_self_attentions,
|
1187 |
+
)
|
1188 |
+
|
1189 |
+
|
1190 |
+
class SamHQConfig(SamConfig):
|
1191 |
+
model_type = "sam_hq"
|
1192 |
+
|
1193 |
+
|
1194 |
+
class SamHQPreTrainedModel(PreTrainedModel):
|
1195 |
+
config_class = SamHQConfig
|
1196 |
+
base_model_prefix = "sam_hq"
|
1197 |
+
main_input_name = "pixel_values"
|
1198 |
+
_no_split_modules = ["SamVisionAttention"]
|
1199 |
+
|
1200 |
+
def _init_weights(self, module):
|
1201 |
+
std = self.config.initializer_range
|
1202 |
+
if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)):
|
1203 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
1204 |
+
if module.bias is not None:
|
1205 |
+
module.bias.data.zero_()
|
1206 |
+
elif isinstance(module, nn.Embedding):
|
1207 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
1208 |
+
if module.padding_idx is not None:
|
1209 |
+
module.weight.data[module.padding_idx].zero_()
|
1210 |
+
|
1211 |
+
|
1212 |
+
SAM_START_DOCSTRING = r"""
|
1213 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
1214 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
1215 |
+
etc.)
|
1216 |
+
|
1217 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
1218 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
1219 |
+
and behavior.
|
1220 |
+
|
1221 |
+
Parameters:
|
1222 |
+
config ([`SamConfig`]): Model configuration class with all the parameters of the model.
|
1223 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
1224 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
1225 |
+
"""
|
1226 |
+
|
1227 |
+
|
1228 |
+
SAM_INPUTS_DOCSTRING = r"""
|
1229 |
+
Args:
|
1230 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
1231 |
+
Pixel values. Pixel values can be obtained using [`SamProcessor`]. See [`SamProcessor.__call__`] for
|
1232 |
+
details.
|
1233 |
+
input_points (`torch.FloatTensor` of shape `(batch_size, num_points, 2)`):
|
1234 |
+
Input 2D spatial points, this is used by the prompt encoder to encode the prompt. Generally yields to much
|
1235 |
+
better results. The points can be obtained by passing a list of list of list to the processor that will
|
1236 |
+
create corresponding `torch` tensors of dimension 4. The first dimension is the image batch size, the
|
1237 |
+
second dimension is the point batch size (i.e. how many segmentation masks do we want the model to predict
|
1238 |
+
per input point), the third dimension is the number of points per segmentation mask (it is possible to pass
|
1239 |
+
multiple points for a single mask), and the last dimension is the x (vertical) and y (horizontal)
|
1240 |
+
coordinates of the point. If a different number of points is passed either for each image, or for each
|
1241 |
+
mask, the processor will create "PAD" points that will correspond to the (0, 0) coordinate, and the
|
1242 |
+
computation of the embedding will be skipped for these points using the labels.
|
1243 |
+
input_labels (`torch.LongTensor` of shape `(batch_size, point_batch_size, num_points)`):
|
1244 |
+
Input labels for the points, this is used by the prompt encoder to encode the prompt. According to the
|
1245 |
+
official implementation, there are 3 types of labels
|
1246 |
+
|
1247 |
+
- `1`: the point is a point that contains the object of interest
|
1248 |
+
- `0`: the point is a point that does not contain the object of interest
|
1249 |
+
- `-1`: the point corresponds to the background
|
1250 |
+
|
1251 |
+
We added the label:
|
1252 |
+
|
1253 |
+
- `-10`: the point is a padding point, thus should be ignored by the prompt encoder
|
1254 |
+
|
1255 |
+
The padding labels should be automatically done by the processor.
|
1256 |
+
input_boxes (`torch.FloatTensor` of shape `(batch_size, num_boxes, 4)`):
|
1257 |
+
Input boxes for the points, this is used by the prompt encoder to encode the prompt. Generally yields to
|
1258 |
+
much better generated masks. The boxes can be obtained by passing a list of list of list to the processor,
|
1259 |
+
that will generate a `torch` tensor, with each dimension corresponding respectively to the image batch
|
1260 |
+
size, the number of boxes per image and the coordinates of the top left and botton right point of the box.
|
1261 |
+
In the order (`x1`, `y1`, `x2`, `y2`):
|
1262 |
+
|
1263 |
+
- `x1`: the x coordinate of the top left point of the input box
|
1264 |
+
- `y1`: the y coordinate of the top left point of the input box
|
1265 |
+
- `x2`: the x coordinate of the bottom right point of the input box
|
1266 |
+
- `y2`: the y coordinate of the bottom right point of the input box
|
1267 |
+
|
1268 |
+
input_masks (`torch.FloatTensor` of shape `(batch_size, image_size, image_size)`):
|
1269 |
+
SAM model also accepts segmentation masks as input. The mask will be embedded by the prompt encoder to
|
1270 |
+
generate a corresponding embedding, that will be fed later on to the mask decoder. These masks needs to be
|
1271 |
+
manually fed by the user, and they need to be of shape (`batch_size`, `image_size`, `image_size`).
|
1272 |
+
|
1273 |
+
image_embeddings (`torch.FloatTensor` of shape `(batch_size, output_channels, window_size, window_size)`):
|
1274 |
+
Image embeddings, this is used by the mask decder to generate masks and iou scores. For more memory
|
1275 |
+
efficient computation, users can first retrieve the image embeddings using the `get_image_embeddings`
|
1276 |
+
method, and then feed them to the `forward` method instead of feeding the `pixel_values`.
|
1277 |
+
multimask_output (`bool`, *optional*):
|
1278 |
+
In the original implementation and paper, the model always outputs 3 masks per image (or per point / per
|
1279 |
+
bounding box if relevant). However, it is possible to just output a single mask, that corresponds to the
|
1280 |
+
"best" mask, by specifying `multimask_output=False`.
|
1281 |
+
attention_similarity (`torch.FloatTensor`, *optional*):
|
1282 |
+
Attention similarity tensor, to be provided to the mask decoder for target-guided attention in case the
|
1283 |
+
model is used for personalization as introduced in [PerSAM](https://arxiv.org/abs/2305.03048).
|
1284 |
+
target_embedding (`torch.FloatTensor`, *optional*):
|
1285 |
+
Embedding of the target concept, to be provided to the mask decoder for target-semantic prompting in case
|
1286 |
+
the model is used for personalization as introduced in [PerSAM](https://arxiv.org/abs/2305.03048).
|
1287 |
+
output_attentions (`bool`, *optional*):
|
1288 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1289 |
+
tensors for more detail.
|
1290 |
+
output_hidden_states (`bool`, *optional*):
|
1291 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1292 |
+
more detail.
|
1293 |
+
return_dict (`bool`, *optional*):
|
1294 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1295 |
+
"""
|
1296 |
+
|
1297 |
+
|
1298 |
+
@add_start_docstrings(
|
1299 |
+
"Segment Anything Model (SAM) for generating segmentation masks, given an input image and ",
|
1300 |
+
" optional 2D location and bounding boxes.",
|
1301 |
+
SAM_START_DOCSTRING,
|
1302 |
+
)
|
1303 |
+
class SamHQModel(SamHQPreTrainedModel):
|
1304 |
+
_tied_weights_keys = ["prompt_encoder.shared_embedding.positional_embedding"]
|
1305 |
+
|
1306 |
+
def __init__(self, config):
|
1307 |
+
super().__init__(config)
|
1308 |
+
self.shared_image_embedding = SamPositionalEmbedding(config.vision_config)
|
1309 |
+
|
1310 |
+
self.vision_encoder = SamVisionEncoder(config.vision_config)
|
1311 |
+
self.prompt_encoder = SamPromptEncoder(config.prompt_encoder_config, self.shared_image_embedding)
|
1312 |
+
if "vision_encoder_dim" not in config.mask_decoder_config.to_dict():
|
1313 |
+
config.mask_decoder_config.vision_encoder_dim = config.vision_config.hidden_size
|
1314 |
+
self.mask_decoder = SamMaskDecoderHQ(config.mask_decoder_config)
|
1315 |
+
|
1316 |
+
self.post_init()
|
1317 |
+
|
1318 |
+
def get_input_embeddings(self):
|
1319 |
+
return self.vision_encoder.get_input_embeddings()
|
1320 |
+
|
1321 |
+
def get_image_wide_positional_embeddings(self):
|
1322 |
+
size = self.config.prompt_encoder_config.image_embedding_size
|
1323 |
+
target_device = self.shared_image_embedding.positional_embedding.device
|
1324 |
+
target_dtype = self.shared_image_embedding.positional_embedding.dtype
|
1325 |
+
grid = torch.ones((size, size), device=target_device, dtype=target_dtype)
|
1326 |
+
y_embed = grid.cumsum(dim=0) - 0.5
|
1327 |
+
x_embed = grid.cumsum(dim=1) - 0.5
|
1328 |
+
y_embed = y_embed / size
|
1329 |
+
x_embed = x_embed / size
|
1330 |
+
|
1331 |
+
positional_embedding = self.shared_image_embedding(torch.stack([x_embed, y_embed], dim=-1))
|
1332 |
+
return positional_embedding.permute(2, 0, 1).unsqueeze(0) # channel x height x width
|
1333 |
+
|
1334 |
+
@torch.no_grad()
|
1335 |
+
def get_image_embeddings(
|
1336 |
+
self,
|
1337 |
+
pixel_values,
|
1338 |
+
output_attentions: Optional[bool] = None,
|
1339 |
+
output_hidden_states: Optional[bool] = None,
|
1340 |
+
return_dict: Optional[bool] = None,
|
1341 |
+
):
|
1342 |
+
r"""
|
1343 |
+
Returns the image embeddings by passing the pixel values through the vision encoder.
|
1344 |
+
|
1345 |
+
Args:
|
1346 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
1347 |
+
Input pixel values
|
1348 |
+
output_attentions (`bool`, *optional*):
|
1349 |
+
Whether or not to return the attentions tensors of all attention layers.
|
1350 |
+
output_hidden_states (`bool`, *optional*):
|
1351 |
+
Whether or not to return the hidden states of all layers.
|
1352 |
+
return_dict (`bool`, *optional*):
|
1353 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1354 |
+
|
1355 |
+
"""
|
1356 |
+
vision_output = self.vision_encoder(
|
1357 |
+
pixel_values,
|
1358 |
+
output_attentions=output_attentions,
|
1359 |
+
output_hidden_states=output_hidden_states,
|
1360 |
+
return_dict=return_dict,
|
1361 |
+
)
|
1362 |
+
image_embeddings = vision_output[0]
|
1363 |
+
return image_embeddings
|
1364 |
+
|
1365 |
+
@torch.no_grad()
|
1366 |
+
def get_prompt_embeddings(
|
1367 |
+
self,
|
1368 |
+
input_points: Optional[torch.FloatTensor] = None,
|
1369 |
+
input_labels: Optional[torch.LongTensor] = None,
|
1370 |
+
input_boxes: Optional[torch.FloatTensor] = None,
|
1371 |
+
input_masks: Optional[torch.LongTensor] = None,
|
1372 |
+
):
|
1373 |
+
r"""
|
1374 |
+
Returns the prompt embeddings by passing the input points, labels, boxes and masks through the prompt encoder.
|
1375 |
+
|
1376 |
+
Args:
|
1377 |
+
input_points (`torch.FloatTensor` of shape `(batch_size, point_batch_size, num_points_per_image, 2)`):
|
1378 |
+
Optional input points for the prompt encoder. The padding of the point is automatically done by the
|
1379 |
+
processor. `point_batch_size` refers to the number of masks that we want the model to predict per
|
1380 |
+
point. The model will output `point_batch_size` times 3 masks in total.
|
1381 |
+
input_labels (`torch.LongTensor` of shape `(batch_size, point_batch_size, num_points_per_image)`):
|
1382 |
+
Optional input labels for the prompt encoder. The padding of the labels is automatically done by the
|
1383 |
+
processor, or can be fed by the user.
|
1384 |
+
input_boxes (`torch.FloatTensor` of shape `(batch_size, num_boxes_per_image, 4)`):
|
1385 |
+
Optional input boxes for the prompt encoder. The padding of the boxes is automatically done by the
|
1386 |
+
processor. users can also pass manually the input boxes.
|
1387 |
+
input_masks (`torch.LongTensor` of shape `(batch_size, image_size, image_size)`):
|
1388 |
+
Optional input masks for the prompt encoder.
|
1389 |
+
"""
|
1390 |
+
prompt_output = self.prompt_encoder(
|
1391 |
+
input_points=input_points,
|
1392 |
+
input_labels=input_labels,
|
1393 |
+
input_boxes=input_boxes,
|
1394 |
+
input_masks=input_masks,
|
1395 |
+
)
|
1396 |
+
return prompt_output
|
1397 |
+
|
1398 |
+
@add_start_docstrings_to_model_forward(SAM_INPUTS_DOCSTRING)
|
1399 |
+
def forward(
|
1400 |
+
self,
|
1401 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1402 |
+
input_points: Optional[torch.FloatTensor] = None,
|
1403 |
+
input_labels: Optional[torch.LongTensor] = None,
|
1404 |
+
input_boxes: Optional[torch.FloatTensor] = None,
|
1405 |
+
input_masks: Optional[torch.LongTensor] = None,
|
1406 |
+
image_embeddings: Optional[torch.FloatTensor] = None,
|
1407 |
+
multimask_output: bool = False,
|
1408 |
+
hq_token_only: bool = True,
|
1409 |
+
attention_similarity: Optional[torch.FloatTensor] = None,
|
1410 |
+
target_embedding: Optional[torch.FloatTensor] = None,
|
1411 |
+
output_attentions: Optional[bool] = None,
|
1412 |
+
output_hidden_states: Optional[bool] = None,
|
1413 |
+
return_dict: Optional[bool] = None,
|
1414 |
+
**kwargs,
|
1415 |
+
) -> List[Dict[str, torch.Tensor]]:
|
1416 |
+
r"""
|
1417 |
+
Example:
|
1418 |
+
|
1419 |
+
```python
|
1420 |
+
>>> from PIL import Image
|
1421 |
+
>>> import requests
|
1422 |
+
>>> from transformers import AutoModel, AutoProcessor
|
1423 |
+
|
1424 |
+
>>> model = AutoModel.from_pretrained("facebook/sam-vit-base")
|
1425 |
+
>>> processor = AutoProcessor.from_pretrained("facebook/sam-vit-base")
|
1426 |
+
|
1427 |
+
>>> img_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/sam-car.png"
|
1428 |
+
>>> raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB")
|
1429 |
+
>>> input_points = [[[400, 650]]] # 2D location of a window on the car
|
1430 |
+
>>> inputs = processor(images=raw_image, input_points=input_points, return_tensors="pt")
|
1431 |
+
|
1432 |
+
>>> # Get segmentation mask
|
1433 |
+
>>> outputs = model(**inputs)
|
1434 |
+
|
1435 |
+
>>> # Postprocess masks
|
1436 |
+
>>> masks = processor.post_process_masks(
|
1437 |
+
... outputs.pred_masks, inputs["original_sizes"], inputs["reshaped_input_sizes"]
|
1438 |
+
... )
|
1439 |
+
```
|
1440 |
+
"""
|
1441 |
+
output_attentions = (
|
1442 |
+
output_attentions if output_attentions is not None else self.config.output_attentions
|
1443 |
+
)
|
1444 |
+
output_hidden_states = (
|
1445 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1446 |
+
)
|
1447 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1448 |
+
|
1449 |
+
if pixel_values is None and image_embeddings is None:
|
1450 |
+
raise ValueError("Either pixel_values or image_embeddings must be provided.")
|
1451 |
+
|
1452 |
+
if pixel_values is not None and image_embeddings is not None:
|
1453 |
+
raise ValueError("Only one of pixel_values and image_embeddings can be provided.")
|
1454 |
+
|
1455 |
+
if input_points is not None and len(input_points.shape) != 4:
|
1456 |
+
raise ValueError(
|
1457 |
+
"The input_points must be a 4D tensor. Of shape `batch_size`, `point_batch_size`, `nb_points_per_image`, `2`.",
|
1458 |
+
" got {}.".format(input_points.shape),
|
1459 |
+
)
|
1460 |
+
if input_boxes is not None and len(input_boxes.shape) != 3:
|
1461 |
+
raise ValueError(
|
1462 |
+
"The input_points must be a 3D tensor. Of shape `batch_size`, `nb_boxes`, `4`.",
|
1463 |
+
" got {}.".format(input_boxes.shape),
|
1464 |
+
)
|
1465 |
+
if input_points is not None and input_boxes is not None:
|
1466 |
+
point_batch_size = input_points.shape[1]
|
1467 |
+
box_batch_size = input_boxes.shape[1]
|
1468 |
+
if point_batch_size != box_batch_size:
|
1469 |
+
raise ValueError(
|
1470 |
+
"You should provide as many bounding boxes as input points per box. Got {} and {}.".format(
|
1471 |
+
point_batch_size, box_batch_size
|
1472 |
+
)
|
1473 |
+
)
|
1474 |
+
|
1475 |
+
image_positional_embeddings = self.get_image_wide_positional_embeddings()
|
1476 |
+
# repeat with batch size
|
1477 |
+
batch_size = pixel_values.shape[0] if pixel_values is not None else image_embeddings.shape[0]
|
1478 |
+
image_positional_embeddings = image_positional_embeddings.repeat(batch_size, 1, 1, 1)
|
1479 |
+
|
1480 |
+
vision_attentions = None
|
1481 |
+
vision_hidden_states = None
|
1482 |
+
|
1483 |
+
if pixel_values is not None:
|
1484 |
+
vision_outputs = self.vision_encoder(
|
1485 |
+
pixel_values,
|
1486 |
+
output_attentions=output_attentions,
|
1487 |
+
output_hidden_states=output_hidden_states,
|
1488 |
+
return_dict=return_dict,
|
1489 |
+
)
|
1490 |
+
image_embeddings = vision_outputs[0]
|
1491 |
+
|
1492 |
+
if output_hidden_states:
|
1493 |
+
vision_hidden_states = vision_outputs[1]
|
1494 |
+
if output_attentions:
|
1495 |
+
vision_attentions = vision_outputs[-1]
|
1496 |
+
|
1497 |
+
if input_points is not None and input_labels is None:
|
1498 |
+
input_labels = torch.ones_like(
|
1499 |
+
input_points[:, :, :, 0], dtype=torch.int, device=input_points.device
|
1500 |
+
)
|
1501 |
+
|
1502 |
+
if input_points is not None and image_embeddings.shape[0] != input_points.shape[0]:
|
1503 |
+
raise ValueError(
|
1504 |
+
"The batch size of the image embeddings and the input points must be the same. ",
|
1505 |
+
"Got {} and {} respectively.".format(image_embeddings.shape[0], input_points.shape[0]),
|
1506 |
+
" if you want to pass multiple points for the same image, make sure that you passed ",
|
1507 |
+
" input_points of shape (batch_size, point_batch_size, num_points_per_image, 3) and ",
|
1508 |
+
" input_labels of shape (batch_size, point_batch_size, num_points_per_image)",
|
1509 |
+
)
|
1510 |
+
|
1511 |
+
sparse_embeddings, dense_embeddings = self.prompt_encoder(
|
1512 |
+
input_points=input_points,
|
1513 |
+
input_labels=input_labels,
|
1514 |
+
input_boxes=input_boxes,
|
1515 |
+
input_masks=input_masks,
|
1516 |
+
)
|
1517 |
+
|
1518 |
+
low_res_masks, iou_predictions, mask_decoder_attentions = self.mask_decoder(
|
1519 |
+
image_embeddings=image_embeddings,
|
1520 |
+
image_positional_embeddings=image_positional_embeddings,
|
1521 |
+
sparse_prompt_embeddings=sparse_embeddings,
|
1522 |
+
dense_prompt_embeddings=dense_embeddings,
|
1523 |
+
multimask_output=multimask_output,
|
1524 |
+
intermediate_vision_embeddings=vision_hidden_states[1:],
|
1525 |
+
hq_token_only=hq_token_only,
|
1526 |
+
attention_similarity=attention_similarity,
|
1527 |
+
target_embedding=target_embedding,
|
1528 |
+
output_attentions=output_attentions,
|
1529 |
+
)
|
1530 |
+
|
1531 |
+
if not return_dict:
|
1532 |
+
output = (iou_predictions, low_res_masks)
|
1533 |
+
if output_hidden_states:
|
1534 |
+
output = output + (vision_hidden_states,)
|
1535 |
+
|
1536 |
+
if output_attentions:
|
1537 |
+
output = output + (vision_attentions, mask_decoder_attentions)
|
1538 |
+
return output
|
1539 |
+
|
1540 |
+
return SamImageSegmentationOutput(
|
1541 |
+
iou_scores=iou_predictions,
|
1542 |
+
pred_masks=low_res_masks,
|
1543 |
+
vision_hidden_states=vision_hidden_states,
|
1544 |
+
vision_attentions=vision_attentions,
|
1545 |
+
mask_decoder_attentions=mask_decoder_attentions,
|
1546 |
+
)
|
preprocessor_config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_convert_rgb": true,
|
3 |
+
"do_normalize": true,
|
4 |
+
"do_pad": true,
|
5 |
+
"do_rescale": true,
|
6 |
+
"do_resize": true,
|
7 |
+
"image_mean": [
|
8 |
+
0.485,
|
9 |
+
0.456,
|
10 |
+
0.406
|
11 |
+
],
|
12 |
+
"image_processor_type": "SamImageProcessor",
|
13 |
+
"image_std": [
|
14 |
+
0.229,
|
15 |
+
0.224,
|
16 |
+
0.225
|
17 |
+
],
|
18 |
+
"pad_size": {
|
19 |
+
"height": 1024,
|
20 |
+
"width": 1024
|
21 |
+
},
|
22 |
+
"processor_class": "SamProcessor",
|
23 |
+
"resample": 2,
|
24 |
+
"rescale_factor": 0.00392156862745098,
|
25 |
+
"size": {
|
26 |
+
"longest_edge": 1024
|
27 |
+
}
|
28 |
+
}
|