File size: 5,616 Bytes
3189e16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Convert SAM checkpoints from the original repository.

URL: https://github.com/facebookresearch/segment-anything.

Also supports converting the SlimSAM checkpoints from https://github.com/czg1225/SlimSAM/tree/master.
"""
import sys
sys.path.append("../")

import argparse
import re
import torch
from safetensors.torch import save_model
from huggingface_hub import hf_hub_download
from transformers import SamVisionConfig
from sam_hq_vit_huge.modeling_sam_hq import SamHQModel
from sam_hq_vit_huge.configuration_sam_hq import SamHQConfig


def get_config(model_name):
    if "sam_hq_vit_b" in model_name:
        vision_config = SamVisionConfig()
    elif "sam_hq_vit_l" in model_name:
        vision_config = SamVisionConfig(
            hidden_size=1024,
            num_hidden_layers=24,
            num_attention_heads=16,
            global_attn_indexes=[5, 11, 17, 23],
        )
    elif "sam_hq_vit_h" in model_name:
        vision_config = SamVisionConfig(
            hidden_size=1280,
            num_hidden_layers=32,
            num_attention_heads=16,
            global_attn_indexes=[7, 15, 23, 31],
        )

    config = SamHQConfig(
        vision_config=vision_config,
    )

    return config


KEYS_TO_MODIFY_MAPPING = {
    # Vision Encoder
    "image_encoder": "vision_encoder",
    "patch_embed.proj": "patch_embed.projection",
    "blocks.": "layers.",
    "neck.0": "neck.conv1",
    "neck.1": "neck.layer_norm1",
    "neck.2": "neck.conv2",
    "neck.3": "neck.layer_norm2",

    # Prompt Encoder
    "mask_downscaling.0": "mask_embed.conv1",
    "mask_downscaling.1": "mask_embed.layer_norm1",
    "mask_downscaling.3": "mask_embed.conv2",
    "mask_downscaling.4": "mask_embed.layer_norm2",
    "mask_downscaling.6": "mask_embed.conv3",
    "point_embeddings": "point_embed",
    "pe_layer.positional_encoding_gaussian_matrix": "shared_embedding.positional_embedding",

    # Mask Decoder
    "iou_prediction_head.layers.0": "iou_prediction_head.proj_in",
    "iou_prediction_head.layers.1": "iou_prediction_head.layers.0",
    "iou_prediction_head.layers.2": "iou_prediction_head.proj_out",
    "mask_decoder.output_upscaling.0": "mask_decoder.upscale_conv1",
    "mask_decoder.output_upscaling.1": "mask_decoder.upscale_layer_norm",
    "mask_decoder.output_upscaling.3": "mask_decoder.upscale_conv2",
    ".norm": ".layer_norm",

    # SAM HQ Extra (in Mask Decoder)
    "hf_mlp.layers.0": "hf_mlp.proj_in",
    "hf_mlp.layers.1": "hf_mlp.layers.0",
    "hf_mlp.layers.2": "hf_mlp.proj_out",  
}


def replace_keys(state_dict):
    model_state_dict = {}
    state_dict.pop("pixel_mean", None)
    state_dict.pop("pixel_std", None)

    output_hypernetworks_mlps_pattern = r".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*"

    for key, value in state_dict.items():
        for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
            if key_to_modify in key:
                key = key.replace(key_to_modify, new_key)

            if re.match(output_hypernetworks_mlps_pattern, key):
                layer_nb = int(re.match(output_hypernetworks_mlps_pattern, key).group(2))
                if layer_nb == 0:
                    key = key.replace("layers.0", "proj_in")
                elif layer_nb == 1:
                    key = key.replace("layers.1", "layers.0")
                elif layer_nb == 2:
                    key = key.replace("layers.2", "proj_out")
                break

        model_state_dict[key] = value.cpu()

    model_state_dict["shared_image_embedding.positional_embedding"] = model_state_dict[
        "prompt_encoder.shared_embedding.positional_embedding"
    ].cpu().clone()

    return model_state_dict


def convert_sam_checkpoint(model_name, checkpoint_path, output_dir):
    config = get_config(model_name)

    state_dict = torch.load(checkpoint_path, map_location="cpu")
    state_dict = replace_keys(state_dict)

    hf_model = SamHQModel(config)
    hf_model.eval()

    hf_model.load_state_dict(state_dict)

    if output_dir is not None:
        save_model(hf_model, f"{output_dir}/{model_name}.safetensors", metadata={"format": "pt"})


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    choices = ["sam_hq_vit_b", "sam_hq_vit_l", "sam_hq_vit_h"]
    parser.add_argument(
        "--model_name",
        default="sam_hq_vit_h",
        choices=choices,
        type=str,
        help="Name of the original model to convert",
    )
    parser.add_argument(
        "--checkpoint_path",
        type=str,
        required=False,
        help="Path to the original checkpoint",
    )
    parser.add_argument("--output_dir", default=".", type=str, help="Path to the output PyTorch model.")

    args = parser.parse_args()

    if args.checkpoint_path is not None:
        checkpoint_path = args.checkpoint_path
    else:
        checkpoint_path = hf_hub_download("lkeab/hq-sam", f"{args.model_name}.pth")

    convert_sam_checkpoint(args.model_name, checkpoint_path, args.output_dir)